forked from diux-dev/cluster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_grpc_recv.py
executable file
·197 lines (153 loc) · 6.24 KB
/
benchmark_grpc_recv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
#
# Dependencies:
# portpicker (pip install portpicker)
# tcmalloc4 (sudo apt-get install google-perftools)
#
# TODO: add baseline numbers
# Generating profile:
#
# rm /tmp/profile*
# python benchmark_grpc_recv.py --data_mb=512 --profile
# export p=/tmp/profile.out.0_27680
# google-pprof `which python` $p --svg > /tmp/profile.0.svg
# export p=/tmp/profile.out.1_27683
# google-pprof `which python` $p --svg > /tmp/profile.1.svg
import os
import portpicker
import subprocess
import sys
import tensorflow as tf
import threading
import time
flags = tf.flags
flags.DEFINE_integer("iters", 1000, "number of times to repeat experiment")
flags.DEFINE_integer("iters_per_step", 100, "number of additions per step")
flags.DEFINE_integer("data_mb", 128, "size of vector in MBs")
flags.DEFINE_boolean("verbose", False, "whether to have verbose logging")
flags.DEFINE_boolean("profile", False, "whether to collect CPU profile")
# internal flags, set by client
flags.DEFINE_string("task_index", "", "# of current task")
flags.DEFINE_string("port0", "12222", "port of worker1, used as master")
flags.DEFINE_string("port1", "12223", "port of worker2")
FLAGS = flags.FLAGS
flags.DEFINE_string('localdir_prefix', '/temp/logs',
'where to mirror worker logs locally')
flags.DEFINE_string('logdir_prefix', '/efs/logs',
'where to dump EFS logs')
flags.DEFINE_string('name', 'default',
'tag used to keep track of machines in this experiment')
# setup local cluster from flags
def session_config():
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
graph_options = tf.GraphOptions(optimizer_options=optimizer_options)
config = tf.ConfigProto(graph_options=graph_options,
intra_op_parallelism_threads=10,
inter_op_parallelism_threads=10)
host = "127.0.0.1"
def clusterspec():
cluster = {"worker": [host+":"+FLAGS.port0, host+":"+FLAGS.port1]}
return tf.train.ClusterSpec(cluster).as_cluster_def()
def create_graph(device0, device1):
"""Create graph that keeps var1 on device0, var2 on device1 and adds them"""
tf.reset_default_graph()
dtype=tf.int32
params_size = 250*1000*FLAGS.data_mb # 1MB is 250k integers
with tf.device(device0):
var1 = tf.get_variable("var1", [params_size], dtype,
initializer=tf.ones_initializer())
with tf.device(device1):
var2 = tf.get_variable("var2", [params_size], dtype,
initializer=tf.ones_initializer())
add_op = var1.assign_add(var2)
init_op = tf.global_variables_initializer()
return init_op, add_op
def create_done_queue(i):
"""Queue used to signal death for i'th worker."""
with tf.device("/job:worker/task:%s" % (i)):
return tf.FIFOQueue(1, tf.int32, shared_name="done_queue"+
str(i))
from tensorflow.python.summary import summary as summary_lib
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.util import compat
from tensorflow.core.util import event_pb2
from tensorflow.core.framework import summary_pb2
from tensorflow.python.training import training_util # TOOD: not needed?
def make_event(tag, value, step):
event = event_pb2.Event(
wall_time=time.time(),
step=step,
summary=summary_pb2.Summary(
value=[summary_pb2.Summary.Value(
tag=tag, simple_value=value)]))
return event
def run_benchmark(sess, init_op, add_op):
"""Returns MB/s rate of addition."""
logdir=FLAGS.logdir_prefix+'/'+FLAGS.name
os.system('mkdir -p '+logdir)
# TODO: make events follow same format as eager writer
writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(logdir+'/events'))
filename = compat.as_text(writer.FileName())
training_util.get_or_create_global_step()
sess.run(init_op)
for step in range(FLAGS.iters):
start_time = time.time()
for i in range(FLAGS.iters_per_step):
sess.run(add_op.op)
elapsed_time = time.time() - start_time
rate = float(FLAGS.iters)*FLAGS.data_mb/elapsed_time
event = make_event('rate', rate, step)
writer.WriteEvent(event)
writer.Flush()
writer.Close()
# add event
def run_benchmark_local():
ops = create_graph(None, None)
sess = tf.Session(config=session_config())
return run_benchmark(sess, *ops)
def run_benchmark_distributed():
ops = create_graph("/job:worker/task:0", "/job:worker/task:1")
queues = [create_done_queue(0), create_done_queue(1)]
# launch distributed service
port0, port1 = [portpicker.pick_unused_port() for _ in range(2)]
flags = " ".join(sys.argv) # pass parent flags to children
def run_worker(w):
my_env = os.environ.copy()
if not FLAGS.verbose:
my_env["CUDA_VISIBLE_DEVICES"] = ""
my_env["TF_CPP_MIN_LOG_LEVEL"] = "2"
if FLAGS.profile:
my_env["LD_PRELOAD"]="/usr/lib/libtcmalloc_and_profiler.so.4"
my_env["CPUPROFILE"]="/tmp/profile.out.%s"%(w)
cmd = "python %s --task=%d --port0=%s --port1=%s"%(flags, w, port0, port1)
subprocess.Popen(cmd, shell=True, stderr=subprocess.STDOUT,
env=my_env)
run_worker(0)
run_worker(1)
sess = tf.Session("grpc://%s:%s"%(host, port0), config=session_config())
rate = run_benchmark(sess, *ops)
# bring down workers
if FLAGS.verbose:
print("Killing workers.")
sess.run(queues[1].enqueue(1))
# todo: sleep to avoid killing master too early?
sess.run(queues[0].enqueue(1)) # bring down master last
return rate
if __name__=='__main__':
if not FLAGS.task_index:
rate1 = run_benchmark_local()
rate2 = run_benchmark_distributed()
if FLAGS.verbose:
print("Adding data in %d MB chunks" %(FLAGS.data_mb))
print("Local rate: %.2f MB/s" %(rate1,))
print("Distributed rate: %.2f MB/s" %(rate2,))
else: # Launch TensorFlow server
server = tf.train.Server(clusterspec(), config=session_config(),
job_name="worker",
task_index=int(FLAGS.task_index))
queue = create_done_queue(FLAGS.task_index)
sess = tf.Session(server.target, config=session_config())
sess.run(queue.dequeue())
time.sleep(1) # give chance for master session.run call to return
if FLAGS.verbose:
print("Worker %s quitting." %(FLAGS.task_index))