forked from beardda/Calcium-dynamics-rat-cardiomyocyte
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalciumModel_withBARLCCPLB_withCaMKLCCPLB.m
706 lines (626 loc) · 29.1 KB
/
CalciumModel_withBARLCCPLB_withCaMKLCCPLB.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
function [scvrmse,AIC,output] = CalciumModel_withBARLCCPLB_withCaMKLCCPLB()
par = [];
load parset_withBARLCCPLB_withCaMKLCCPLB
%% Parameter Values
% physical constants & geometry
Cm = 155.4; %pF - from Walden et al.
Vtot = Cm/6.76*1e-12; %L - capacitance to volume ratio from Walden et al.
F = 9.6485e4*1e-3; %C*mmol^-1
R = 8.3145*1e-3; %J*mmol^-1*K^-1
T = 310.15; %K
lambda_myo = 0.65; %dimensionless - Vmyo/Vtotal - from Page et al.
lambda_sr = 0.035; %dimensionless - Vsr/Vtotal - from Page et al.
vds = par(2); %s^-1 - fitted
vlcc = par(3); %s^-1 - fitted
vryr = par(4); %s^-1 - fitted
% fixed ionic concentrations
Nai = 10; %mM - from Luo and Rudy
Nao = 140; %mM - from Luo and Rudy
Cao = 1.8; %mM - from Luo and Rudy
% buffering
Bfluo = 5e-3; %mM - experiment condition from Dibb et al.
Kfluo = 8.64e-4; %mM - from Ito et al.
Bbuff_myo = par(21); %mM - fitted
Kdmyo = par(29); %mM - fitted
Bbuff_sr = par(1); %mM - fitted
Kdsr = par(30); %mM - fitted
% lcc
Vhalf_lcc = -2e-3; %V - from Hinch et al.
deltaV_lcc = 7e-3; %V - from Hinch et al.
kopen_lcc = 1e4; %s^-1 - value chosen to be arbitrarily fast
kclose_lcc = par(7); %s^-1 - fitted
kinactmin_lcc = par(8); %mM^-1*s^-1 - fitted
kinactmax_lcc = par(9); %mM^-1*s^-1 - fitted
kdeinactmin_lcc = par(10); %s^-1 - fitted
kdeinactmax_lcc = par(11); %s^-1 - fitted
% ryr
Kryr = par(22); %mM - fitted
kopen_ryr = par(12); %s^-1 - fitted
kclose_ryr = par(13); %s^-1 - fitted
kinactmin_ryr = par(14); %s^-1 - fitted
kinactmax_ryr = par(15); %s^-1 - fitted
kdeinactmin_ryr = par(16); %s^-1 - fitted
kdeinactmax_ryr = par(17); %s^-1 - fitted
% serca
Kserca = par(24); %mM - fitted
Jsercao = par(5); %mmol*s^-1*(liter cell vol)^-1 - fitted
% ncx
Jncxo = par(18); %mmol*s^-1*(liter cell vol)^-1 - fitted
Kncxn = 87.5; %mM - from Luo and Rudy
Kncxc = 1.38; %mM - from Luo and Rudy
kncxsat = 0.1; %dimensionless - from Luo and Rudy
eta_ncx = 0.35; %dimensionless - from Luo and Rudy
% pmca
Jpmca_max = par(19); %mmol*s^-1*(liter cell vol)^-1 - fitted
Kpmca = par(23); %mM - fitted
% leak currents
vsrleak = par(6); %s^-1 - fitted
gpmleak = par(20); %mmol*V^-1*s^-1*(liter cell vol)^-1 - fitted
% beta-AR system regulation
%lcc
phi_lcc_BAR_max = par(26); %dimensionless - fitted
Kiso_lcc = 2.8083e-5; %mM
Hiso_lcc = 0.7984; %dimensionless
tauBAR_lcc = 36/3; %s
zetalcc = par(27); %dimensionless - fitted
%plb
phi_plb_BAR_max = par(25); %dimensionless - fitted
Kiso_plb = 1.8299e-4/10; %mM - reduced by a factor of 10 to account for 10 fold higher affinity of isoprenaline compared to norepinephrine
Hiso_plb = 0.7785; %dimensionless
tauBAR_plb = 31.0148/3; %s
zetaserca = par(28); %dimensionless - fitted
% Electrophysiology Model
thalfo_min = 0.0218; %s
thalfo_max = 0.0337; %s
a_max = 0.0034; % s^2
eta_min = 0.6918; %dimensionless
eta_max = 2.0608; %dimensionless
Eo_min = -115.8435e-3; %V
Eo_max = -86.0027e-3; %V
Emax = 30.1721e-3; %V
Kiso_AP = 2.4040e-006; %mM
Hiso_AP = 1.1337; %dimensionless
tauAPD_H = 0.2; %s
tauAPD_BAR = 6; %s
% CaMK
phi_plb_4Hz_CaMK_con = par(31);
phi_plb_6Hz_CaMK_con = par(32);
phi_plb_8Hz_CaMK_con = par(33);
phi_plb_4Hz_CaMK_iso = par(34);
phi_plb_6Hz_CaMK_iso = par(35);
phi_plb_8Hz_CaMK_iso = par(36);
phi_lcc_4Hz_CaMK_con = par(37);
phi_lcc_6Hz_CaMK_con = par(38);
phi_lcc_8Hz_CaMK_con = par(39);
phi_lcc_4Hz_CaMK_iso = par(40);
phi_lcc_6Hz_CaMK_iso = par(41);
phi_lcc_8Hz_CaMK_iso = par(42);
% Refs.
% [1] Dibb KM, et al. (2007) J Physiol. 585:579-592
% [2] Hartman JM, et al. (2010) Am J Physiol Heart Cir Physiol. 299:H1996-H2008
% [3] Hinch, et al. (2004) Biophys J. 87:3723-3736
% [4] Ito K, et al. (2000) Circ Res. 87:588-595
% [5] Luo CH and Rudy Y. (1994) Circ Res. 74:1071-1096
% [6] Page E, et al. (1971) Proc Nat Acad Sci. 68:1465-1466
% [7] Walden AP, et al. (2009) J of Mol and Cell Cardiology. 46:463-473
% [8] Yatani A and Brown AM. (1989) Science. 245:71-74
%% Simulate current clamp protocol
nstates = 6;
y0 = [1; zeros(nstates-1,1); 1e-6; 0.1; 0; thalfo_min; 0; 0]; %initial condition for odes
t0 = [0; 120; 120*2; 120*3; 120*4; 120*5; 120*6; 120*7; 120*8; 120*9];
tf = [120; 120*2; 120*3; 120*4; 120*5; 120*6; 120*7; 120*8; 120*9; 120*10];
HRstep = [4; 6; 4; 8; 4; 4; 6; 4; 8; 4];
ciso_step = [0, 0, 0, 0, 0, 30e-6, 30e-6, 30e-6, 30e-6, 30e-6];
phi_lcc_CaMK_step = [phi_lcc_4Hz_CaMK_con, phi_lcc_6Hz_CaMK_con, phi_lcc_4Hz_CaMK_con, phi_lcc_8Hz_CaMK_con, phi_lcc_4Hz_CaMK_con, ...
phi_lcc_4Hz_CaMK_iso, phi_lcc_6Hz_CaMK_iso, phi_lcc_4Hz_CaMK_iso, phi_lcc_8Hz_CaMK_iso, phi_lcc_4Hz_CaMK_iso];
phi_plb_CaMK_step = [phi_plb_4Hz_CaMK_con, phi_plb_6Hz_CaMK_con, phi_plb_4Hz_CaMK_con, phi_plb_8Hz_CaMK_con, phi_plb_4Hz_CaMK_con, ...
phi_plb_4Hz_CaMK_iso, phi_plb_6Hz_CaMK_iso, phi_plb_4Hz_CaMK_iso, phi_plb_8Hz_CaMK_iso, phi_plb_4Hz_CaMK_iso];
tout = 0;
yout = y0;
options = odeset('InitialStep',1e-6);
out_cmyo = cell(1,10);
out_csr = cell(1,10);
out_theta = cell(1,10);
out_thalf = cell(1,10);
out_Ia = cell(1,10);
out_Ilcc = cell(1,10);
out_Incx = cell(1,10);
out_Ipmca = cell(1,10);
out_Ileak = cell(1,10);
out_Jds = cell(1,10);
out_Jserca = cell(1,10);
out_Jncx = cell(1,10);
out_Jpmca = cell(1,10);
out_Jpmleak = cell(1,10);
out_Jsrleak = cell(1,10);
out_Jryr = cell(1,10);
out_Em = cell(1,10);
tstep = cell(1,10);
for i=1:length(t0)
HR = HRstep(i);
ciso = ciso_step(i);
phi_lcc_CaMK = phi_lcc_CaMK_step(i);
phi_plb_CaMK = phi_plb_CaMK_step(i);
while tout(end) < tf(i) - 1e-2 %note: the term 1e-2 is an arbitrary
%small number to account for rounding errors
if tout(end) - 1/HR >= t0(i)
ix = find(tout > tout(end) - 1/HR,1,'first');
options = odeset('InitialStep',tout(ix) - tout(ix-1));
end
sol = ode15s(@DYDT,[tout(end),tout(end) + 1/HR],y0,options);
if sol.x(end) ~= tout(end) + 1/HR % solver failed
return
end
tout = [tout, sol.x(2:end)];
yout = [yout, sol.y(:,2:end)];
y0 = sol.y(:,end);
end
end
output = yout(:,end);
Em_model = zeros(1,length(tout));
for j=1:length(tout)
ix = find(t0 <= tout(j), 1, 'last');
HR = HRstep(ix);
ciso = ciso_step(i);
phi_lcc_CaMK = phi_lcc_CaMK_step(i);
phi_plb_CaMK = phi_plb_CaMK_step(i);
[~,out2] = DYDT(tout(j),yout(:,j));
Em_model(j) = out2(13);
end
%% Load Outputs
for i=1:length(t0);
HR = HRstep(i);
ciso = ciso_step(i);
phi_lcc_CaMK = phi_lcc_CaMK_step(i);
phi_plb_CaMK = phi_plb_CaMK_step(i);
ixi = tout >= tf(i) - 1/HR & tout < tf(i);
youti = yout(:,ixi);
tstep{i} = tout(ixi);
out_cmyo{i} = youti(nstates+1,:);
out_csr{i} = youti(nstates+2,:);
out_theta{i} = youti(nstates+3,:);
out_thalf{i} = youti(nstates+4,:);
out_phi_lcc_BAR{i} = youti(nstates+5,:);
out_phi_plb_BAR{i} = youti(nstates+6,:);
out_Ia{i} = zeros(length(tstep{i}),1);
out_Ilcc{i} = zeros(length(tstep{i}),1);
out_Incx{i} = zeros(length(tstep{i}),1);
out_Ipmca{i} = zeros(length(tstep{i}),1);
out_Ileak{i} = zeros(length(tstep{i}),1);
out_Jds{i} = zeros(length(tstep{i}),1);
out_Jserca{i} = zeros(length(tstep{i}),1);
out_Jncx{i} = zeros(length(tstep{i}),1);
out_Jpmca{i} = zeros(length(tstep{i}),1);
out_Jpmleak{i} = zeros(length(tstep{i}),1);
out_Jsrleak{i} = zeros(length(tstep{i}),1);
out_Jryr{i} = zeros(length(tstep{i}),1);
out_Em{i} = zeros(length(tstep{i}),1);
for j=1:length(tstep{i})
[~,out2] = DYDT(tstep{i}(j),youti(:,j));
out_Ia{i}(j) = out2(1);
out_Ilcc{i}(j) = out2(2);
out_Incx{i}(j) = out2(3);
out_Ipmca{i}(j) = out2(4);
out_Ileak{i}(j) = out2(5);
out_Jds{i}(j) = out2(6);
out_Jserca{i}(j) = out2(7);
out_Jncx{i}(j) = out2(8);
out_Jpmca{i}(j) = out2(9);
out_Jpmleak{i}(j) = out2(10);
out_Jsrleak{i}(j) = out2(11);
out_Jryr{i}(j) = out2(12);
out_Em{i}(j) = out2(13);
end
tstep{i} = tstep{i} - tstep{i}(1);
out_Em{i}(1) = out_Em{i}(end);
end
%% Compare to Dibb Figure 1
Cai_amplitude_model = [(max(out_cmyo{1})-out_cmyo{1}(1)); ...
(max(out_cmyo{2})-out_cmyo{2}(1)); ...
(max(out_cmyo{4})-out_cmyo{4}(1))]*1e6;
Cai_diastolic_model = [out_cmyo{1}(1); out_cmyo{2}(1); out_cmyo{4}(1)]*1e6;
Cai_4Hz = []; Cai_6Hz = []; Cai_8Hz = [];
Cai_amplitude = []; Cai_amplitude_err = [];
Cai_diastolic = []; Cai_diastolic_err = [];
SRC_control = []; SRC_control_err = []; t_switch = [];
load Dibb_Fig1_data
AP_4Hz_ctl = []; AP_6Hz_ctl = []; AP_8Hz_ctl = [];
AP_4Hz_iso = []; AP_6Hz_iso = []; AP_8Hz_iso = [];
load ActionPotentials
Cai_4Hz_norm = (Cai_4Hz(:,2)-Cai_4Hz(1,2))/(max(Cai_4Hz(:,2)) - Cai_4Hz(1,2));
Cai_6Hz_norm = (Cai_6Hz(:,2)-Cai_6Hz(1,2))/(max(Cai_6Hz(:,2)) - Cai_6Hz(1,2));
Cai_8Hz_norm = (Cai_8Hz(:,2)-Cai_8Hz(1,2))/(max(Cai_8Hz(:,2)) - Cai_8Hz(1,2));
Cai_4Hz_norm_model = (out_cmyo{1} - out_cmyo{1}(1))/(max(out_cmyo{1})-out_cmyo{1}(1));
Cai_6Hz_norm_model = (out_cmyo{2} - out_cmyo{2}(1))/(max(out_cmyo{2})-out_cmyo{2}(1));
Cai_8Hz_norm_model = (out_cmyo{4} - out_cmyo{4}(1))/(max(out_cmyo{4})-out_cmyo{4}(1));
cvrmse1 = (sqrt(sum((interp1(tstep{1},Cai_4Hz_norm_model,Cai_4Hz(:,1)*1e-3) - Cai_4Hz_norm).^2)/length(Cai_4Hz_norm))/mean(Cai_4Hz_norm) + ...
sqrt(sum((interp1(tstep{2},Cai_6Hz_norm_model,Cai_6Hz(:,1)*1e-3) - Cai_6Hz_norm).^2)/length(Cai_6Hz_norm))/mean(Cai_6Hz_norm) + ...
sqrt(sum((interp1(tstep{4},Cai_8Hz_norm_model,Cai_8Hz(:,1)*1e-3) - Cai_8Hz_norm).^2)/length(Cai_8Hz_norm))/mean(Cai_8Hz_norm))/3;
cvrmse2 = sqrt(sum((Cai_amplitude_model - Cai_amplitude(:,2)).^2)/length(Cai_amplitude(:,2)))/mean(Cai_amplitude(:,2));
cvrmse3 = sqrt(sum((Cai_diastolic_model - Cai_diastolic(:,2)).^2)/length(Cai_diastolic(:,2)))/mean(Cai_diastolic(:,2));
chisquare1 = sum(((Cai_amplitude_model - Cai_amplitude(:,2))./(Cai_amplitude_err(:,2)*sqrt(12))).^2);
chisquare2 = sum(((Cai_diastolic_model - Cai_diastolic(:,2))./(Cai_diastolic_err(:,2)*sqrt(12))).^2);
figure(1);
plot(tout,yout(nstates+1,:)*1e6,'k');
title('Figure 5A');
xlabel('time (s)');
ylabel('[Ca]_i (nM)');
ylim([0,2600]);
figure(2);
hold on;
plot(tstep{1}*1e3,Cai_4Hz_norm_model,'k',Cai_4Hz(:,1),Cai_4Hz_norm,'ok');
plot(tstep{2}*1e3,Cai_6Hz_norm_model,'b',Cai_6Hz(:,1),Cai_6Hz_norm,'ob');
plot(tstep{4}*1e3,Cai_8Hz_norm_model,'g',Cai_8Hz(:,1),Cai_8Hz_norm,'og');
hold off;
title('Figure 5B');
xlabel('time (ms)');
ylabel('Normalized [Ca]_i');
figure(3);
hold on;
plot(tstep{1}*1e3,out_Em{1}*1e3,'k',AP_4Hz_ctl(:,1),AP_4Hz_ctl(:,2),'ok');
plot(tstep{2}*1e3,out_Em{2}*1e3,'b',AP_6Hz_ctl(:,1),AP_6Hz_ctl(:,2),'ob');
plot(tstep{4}*1e3,out_Em{4}*1e3,'g',AP_8Hz_ctl(:,1),AP_8Hz_ctl(:,2),'og');
hold off;
title('Figure S2A');
xlabel('time (ms)');
ylabel('V_m (mV)');
figure(4);
hold on;
errorbar(1,Cai_amplitude(1,2),Cai_amplitude_err(1,2),'ok','MarkerFaceColor','auto','LineStyle','none');
errorbar(2,Cai_amplitude(2,2),Cai_amplitude_err(2,2),'ob','MarkerFaceColor','auto','LineStyle','none');
errorbar(3,Cai_amplitude(3,2),Cai_amplitude_err(3,2),'og','MarkerFaceColor','auto','LineStyle','none');
plot([1;2;3],Cai_amplitude_model,'-k');
errorbar(1,Cai_diastolic(1,2),Cai_diastolic_err(1,2),'sk','MarkerFaceColor','none','LineStyle','none');
errorbar(2,Cai_diastolic(2,2),Cai_diastolic_err(2,2),'sb','MarkerFaceColor','none','LineStyle','none');
errorbar(3,Cai_diastolic(3,2),Cai_diastolic_err(3,2),'sg','MarkerFaceColor','none','LineStyle','none');
plot([1;2;3],Cai_diastolic_model,'--k');
set(gca,'XTick',[1,2,3],'XTickLabel',{'4Hz','6Hz','8Hz'});
hold off;
title('Figure 5D');
ylabel('[Ca]_i (nM)');
ylim([0,400]);
xlim([0.8,3.2]);
%% Compare to Dibb Figure 8
Cai_amplitude_model = [(max(out_cmyo{1})-out_cmyo{1}(1)); ...
(max(out_cmyo{6})-out_cmyo{6}(1)); ...
(max(out_cmyo{7})-out_cmyo{7}(1)); ...
(max(out_cmyo{9})-out_cmyo{9}(1))]*1e6;
Cai_diastolic_model = [out_cmyo{1}(1); out_cmyo{6}(1); out_cmyo{7}(1); out_cmyo{9}(1)]*1e6;
Cai_4Hz_con = []; Cai_4Hz_iso = []; Cai_6Hz_iso = []; Cai_8Hz_iso = [];
Cai_amplitude = []; Cai_amplitude_err = [];
Cai_diastolic = []; Cai_diastolic_err = [];
SRC_iso = []; SRC_iso_err = []; t_switch = [];
load Dibb_Fig8_data
Cai_4Hz_con_norm = (Cai_4Hz_con(:,2)-Cai_4Hz_con(1,2))/(max(Cai_4Hz_con(:,2)) - Cai_4Hz_con(1,2));
Cai_4Hz_iso_norm = (Cai_4Hz_iso(:,2)-Cai_4Hz_iso(1,2))/(max(Cai_4Hz_iso(:,2)) - Cai_4Hz_iso(1,2));
Cai_6Hz_iso_norm = (Cai_6Hz_iso(:,2)-Cai_6Hz_iso(1,2))/(max(Cai_6Hz_iso(:,2)) - Cai_6Hz_iso(1,2));
Cai_8Hz_iso_norm = (Cai_8Hz_iso(:,2)-Cai_8Hz_iso(1,2))/(max(Cai_8Hz_iso(:,2)) - Cai_8Hz_iso(1,2));
Cai_4Hz_con_norm_model = (out_cmyo{1} - out_cmyo{1}(1))/(max(out_cmyo{1})-out_cmyo{1}(1));
Cai_4Hz_iso_norm_model = (out_cmyo{6} - out_cmyo{6}(1))/(max(out_cmyo{6})-out_cmyo{6}(1));
Cai_6Hz_iso_norm_model = (out_cmyo{7} - out_cmyo{7}(1))/(max(out_cmyo{7})-out_cmyo{7}(1));
Cai_8Hz_iso_norm_model = (out_cmyo{9} - out_cmyo{9}(1))/(max(out_cmyo{9})-out_cmyo{9}(1));
cvrmse4 = (sqrt(sum((interp1(tstep{1},Cai_4Hz_con_norm_model,Cai_4Hz_con(:,1)*1e-3) - Cai_4Hz_con_norm).^2)/length(Cai_4Hz_con_norm))/mean(Cai_4Hz_con_norm) + ...
sqrt(sum((interp1(tstep{6},Cai_4Hz_iso_norm_model,Cai_4Hz_iso(:,1)*1e-3) - Cai_4Hz_iso_norm).^2)/length(Cai_4Hz_iso_norm))/mean(Cai_4Hz_iso_norm) + ...
sqrt(sum((interp1(tstep{7},Cai_6Hz_iso_norm_model,Cai_6Hz_iso(:,1)*1e-3) - Cai_6Hz_iso_norm).^2)/length(Cai_6Hz_iso_norm))/mean(Cai_6Hz_iso_norm) + ...
sqrt(sum((interp1(tstep{9},Cai_8Hz_iso_norm_model,Cai_8Hz_iso(:,1)*1e-3) - Cai_8Hz_iso_norm).^2)/length(Cai_8Hz_iso_norm))/mean(Cai_8Hz_iso_norm))/4;
cvrmse5 = sqrt(sum((Cai_amplitude_model - Cai_amplitude(:,2)).^2)/length(Cai_amplitude(:,2)))/mean(Cai_amplitude(:,2));
cvrmse6 = sqrt(sum((Cai_diastolic_model - Cai_diastolic(:,2)).^2)/length(Cai_diastolic(:,2)))/mean(Cai_diastolic(:,2));
chisquare3 = sum(((Cai_amplitude_model - Cai_amplitude(:,2))./(Cai_amplitude_err(:,2)*sqrt(8))).^2);
chisquare4 = sum(((Cai_diastolic_model - Cai_diastolic(:,2))./(Cai_diastolic_err(:,2)*sqrt(8))).^2);
figure(5);
hold on;
plot(tstep{1}*1e3,Cai_4Hz_con_norm_model,'c',Cai_4Hz_con(:,1),Cai_4Hz_con_norm,'oc');
plot(tstep{6}*1e3,Cai_4Hz_iso_norm_model,'k',Cai_4Hz_iso(:,1),Cai_4Hz_iso_norm,'ok');
plot(tstep{7}*1e3,Cai_6Hz_iso_norm_model,'b',Cai_6Hz_iso(:,1),Cai_6Hz_iso_norm,'ob');
plot(tstep{9}*1e3,Cai_8Hz_iso_norm_model,'g',Cai_8Hz_iso(:,1),Cai_8Hz_iso_norm,'og');
hold off;
title('Figure 5C');
xlabel('time (ms)');
ylabel('Normalized [Ca]_i');
figure(6);
hold on;
plot(tstep{6}*1e3,out_Em{6}*1e3,'k',AP_4Hz_iso(:,1),AP_4Hz_iso(:,2),'ok');
plot(tstep{7}*1e3,out_Em{7}*1e3,'b',AP_6Hz_iso(:,1),AP_6Hz_iso(:,2),'ob');
plot(tstep{9}*1e3,out_Em{9}*1e3,'g',AP_8Hz_iso(:,1),AP_8Hz_iso(:,2),'og');
hold off;
title('Figure S2B');
xlabel('time (ms)');
ylabel('V_m (mV)');
figure(7);
hold on;
errorbar(1,Cai_amplitude(1,2),Cai_amplitude_err(1,2),'oc','MarkerFaceColor','auto','LineStyle','none');
errorbar(2,Cai_amplitude(2,2),Cai_amplitude_err(2,2),'ok','MarkerFaceColor','auto','LineStyle','none');
errorbar(3,Cai_amplitude(3,2),Cai_amplitude_err(3,2),'ob','MarkerFaceColor','auto','LineStyle','none');
errorbar(4,Cai_amplitude(4,2),Cai_amplitude_err(4,2),'og','MarkerFaceColor','auto','LineStyle','none');
plot([1;2;3;4],Cai_amplitude_model,'-k');
errorbar(1,Cai_diastolic(1,2),Cai_diastolic_err(1,2),'sc','MarkerFaceColor','none','LineStyle','none');
errorbar(2,Cai_diastolic(2,2),Cai_diastolic_err(2,2),'sk','MarkerFaceColor','none','LineStyle','none');
errorbar(3,Cai_diastolic(3,2),Cai_diastolic_err(3,2),'sb','MarkerFaceColor','none','LineStyle','none');
errorbar(4,Cai_diastolic(4,2),Cai_diastolic_err(4,2),'sg','MarkerFaceColor','none','LineStyle','none');
plot([1;2;3;4],Cai_diastolic_model,'--k');
set(gca,'XTick',[1,2,3,4],'XTickLabel',{'4Hz ctl','4Hz+iso','6Hz+iso','8Hz+iso'});
hold off;
title('Figure 5E');
ylabel('[Ca]_i (nM)');
ylim([0,1800]);
xlim([0.8,4.2]);
%% Simulate caffeine experiments
yout1 = yout;
tout1 = tout;
tf1 = tf;
ix1 = [1,2,4,6,7,9];
t0 = [0; 0; 0; 0; 0; 0];
tf = [2; 2; 2; 2; 2; 2];
HRstep = [4; 6; 8; 4; 6; 8];
ciso_step = [0, 0, 0, 30e-6, 30e-6, 30e-6];
phi_lcc_CaMK_step = [phi_lcc_4Hz_CaMK_con, phi_lcc_6Hz_CaMK_con, phi_lcc_8Hz_CaMK_con, ...
phi_lcc_4Hz_CaMK_iso, phi_lcc_6Hz_CaMK_iso, phi_lcc_8Hz_CaMK_iso];
phi_plb_CaMK_step = [phi_plb_4Hz_CaMK_con, phi_plb_6Hz_CaMK_con, phi_plb_8Hz_CaMK_con, ...
phi_plb_4Hz_CaMK_iso, phi_plb_6Hz_CaMK_iso, phi_plb_8Hz_CaMK_iso];
options = odeset('InitialStep',1e-6);
youti = cell(6,1);
tstep = cell(6,1);
youti_long = cell(6,1);
tstep_long = cell(6,1);
for i=1:length(t0)
HR = HRstep(i);
ciso = ciso_step(i);
phi_lcc_CaMK = phi_lcc_CaMK_step(i);
phi_plb_CaMK = phi_plb_CaMK_step(i);
ix = find(tout1 <= tf1(ix1(i)), 1, 'last');
y0 = yout1(:,ix); %initial condition for odes
tout = 0;
yout = y0;
while tout(end) < tf(i) - 1e-2 %note: the term 1e-2 is an arbitrary
%small number to account for rounding errors
if tout(end) - 1/HR >= t0(i)
ix = find(tout > tout(end) - 1/HR,1,'first');
options = odeset('InitialStep',tout(ix) - tout(ix-1));
end
sol = ode15s(@DYDT,[tout(end),tout(end) + 1/HR],y0,options);
if sol.x(end) ~= tout(end) + 1/HR % solver failed
return
end
tout = [tout, sol.x(2:end)];
yout = [yout, sol.y(:,2:end)];
y0 = sol.y(:,end);
end
HR = 0;
vsrleak0 = vsrleak;
vsrleak = vsrleak0*1e4;
sol = ode15s(@DYDT,[tout(end),tout(end) + 6],y0,options);
tout = [tout, sol.x(2:end)];
yout = [yout, sol.y(:,2:end)];
youti{i} = sol.y;
tstep{i} = sol.x;
youti_long{i} = yout;
tstep_long{i} = tout;
vsrleak = vsrleak0;
end
out_Jncx = cell(6,1);
SRC_model = zeros(6,1);
for i=1:length(t0);
HR = 0;
ciso = ciso_step(i);
phi_lcc_CaMK = phi_lcc_CaMK_step(i);
phi_plb_CaMK = phi_plb_CaMK_step(i);
out_Jncx{i} = zeros(length(tstep{i}),1);
for j=1:length(tstep{i})
[~,out2] = DYDT(tstep{i}(j),youti{i}(:,j));
out_Jncx{i}(j) = out2(8);
end
fun = @(tprime) interp1(tstep{i},out_Jncx{i},tprime);
SRC_model(i) = 1.4706*1e3*quad(fun,tstep{i}(1),tstep{i}(end));
tstep{i} = tstep{i} - tstep{i}(1);
end
cvrmse7 = sqrt(sum((SRC_model(1:3) - SRC_control(:,2)).^2)/length(SRC_control(:,2)))/mean(SRC_control(:,2));
cvrmse8 = sqrt(sum((SRC_model([1,4:6]) - SRC_iso(:,2)).^2)/length(SRC_iso(:,2)))/mean(SRC_iso(:,2));
chisquare5 = sum(((SRC_model(1:3) - SRC_control(:,2))./(SRC_control_err(:,2)*sqrt(12))).^2);
chisquare6 = sum(((SRC_model([1,4:6]) - SRC_iso(:,2))./(SRC_iso_err(:,2)*sqrt(8))).^2);
Em_model = cell(6,1);
for i = 1:length(t0)
Em_model{i} = zeros(1,length(tstep_long{i}));
HR = HRstep(i);
ciso = ciso_step(i);
phi_lcc_CaMK = phi_lcc_CaMK_step(i);
phi_plb_CaMK = phi_plb_CaMK_step(i);
for j=1:length(tstep_long{i})
if tstep_long{i}(j) >= tf(i)
HR = 0;
end
[~,out2] = DYDT(tstep_long{i}(j),youti_long{i}(:,j));
Em_model{i}(j) = out2(13);
end
end
figure(8);
subplot(2,1,2); plot(tstep_long{1},youti_long{1}(nstates+1,:),'k');
xlabel('time (s)');
ylabel('[Ca]_i (mM)');
subplot(2,1,1); plot(tstep_long{1},Em_model{1},'k');
ylabel('V_m (V)');
title('Figure 6A');
figure(9);
hold on;
bar(1,SRC_control(1,2),'w','EdgeColor','k');
bar(2,SRC_control(2,2),'w','EdgeColor','b');
bar(3,SRC_control(3,2),'w','EdgeColor','g');
errorbar(1,SRC_control(1,2),0,SRC_control_err(1,2),'k','Marker','none','LineStyle','none');
errorbar(2,SRC_control(2,2),0,SRC_control_err(2,2),'b','Marker','none','LineStyle','none');
errorbar(3,SRC_control(3,2),0,SRC_control_err(3,2),'g','Marker','none','LineStyle','none');
plot([1;2;3],SRC_model(1:3),'-k');
set(gca,'XTick',[1,2,3],'XTickLabel',{'4Hz','6Hz','8Hz'});
hold off;
title('Figure 6B');
ylabel('SR Ca content (micromol/L)');
ylim([0,140]);
figure(10);
hold on;
bar(1,SRC_iso(1,2),'w','EdgeColor','c');
bar(2,SRC_iso(2,2),'w','EdgeColor','k');
bar(3,SRC_iso(3,2),'w','EdgeColor','b');
bar(4,SRC_iso(4,2),'w','EdgeColor','g');
errorbar(1,SRC_iso(1,2),0,SRC_iso_err(1,2),'c','Marker','none','LineStyle','none');
errorbar(2,SRC_iso(2,2),0,SRC_iso_err(2,2),'k','Marker','none','LineStyle','none');
errorbar(3,SRC_iso(3,2),0,SRC_iso_err(3,2),'b','Marker','none','LineStyle','none');
errorbar(4,SRC_iso(4,2),0,SRC_iso_err(4,2),'g','Marker','none','LineStyle','none');
plot([1;2;3;4],SRC_model([1,4:6]),'-k');
set(gca,'XTick',[1,2,3,4],'XTickLabel',{'4Hz ctl','4Hz+iso','6Hz+iso','8Hz+iso'});
hold off;
title('Figure 6C');
ylabel('SR Ca content (micromol/L)');
ylim([0,200]);
scvrmse = cvrmse1 + cvrmse2 + cvrmse3 + cvrmse4 + cvrmse5 + cvrmse6 + cvrmse7 + cvrmse8
AIC = 2*42 + chisquare1 + chisquare2 + chisquare3 + chisquare4 + chisquare5 + chisquare6
%% DYDT function
function [ydot,out2] = DYDT(t,y)
z1_mode1 = y(1);
z2_mode1 = y(2);
z3_mode1 = y(3);
z4_mode1 = 1 - y(1) - y(2) - y(3);
z1_mode2 = y(4);
z2_mode2 = y(5);
z3_mode2 = y(6);
z4_mode2 = 1 - y(4) - y(5) - y(6);
cmyo = y(7);
csr = y(8);
theta = y(9);
thalf = y(10);
phi_lcc_BAR = y(11);
phi_plb_BAR = y(12);
ttilde = mod(t,1/HR);
% electrophysiology
thalfo = (thalfo_max - thalfo_min)*theta + thalfo_min;
a = a_max*theta;
eta = (eta_max - eta_min)*theta + eta_min;
Eo = (Eo_max - Eo_min)*theta + Eo_min;
theta_ss = 1/(1 + (Kiso_AP/ciso)^Hiso_AP);
thalf_ss = thalfo - a*HR;
if isnan(ttilde)
Em = -80e-3;
else
Em = Eo + (Emax - Eo)*(0.5 - 1/pi*atan(log((ttilde/thalf)^eta)));
end
% calcium handling
cds00 = cmyo;
cds01 = (vds*cmyo + vryr*csr)/(vds + vryr);
if abs(Em) < 1e-10
cds10 = (vds*cmyo + vlcc*Cao)/(vds + vlcc);
cds11 = (vds*cmyo + vlcc*Cao + vryr*csr)/(vds + vlcc + vryr);
else
cds10 = (vds*cmyo + vlcc*Em*2*F/R/T*Cao/(exp(Em*2*F/R/T) - 1))/ ...
(vds + vlcc*Em*2*F/R/T/(1 - exp(-Em*2*F/R/T)));
cds11 = (vds*cmyo + vlcc*Em*2*F/R/T*Cao/(exp(Em*2*F/R/T) - 1) + vryr*csr)/ ...
(vds + vlcc*Em*2*F/R/T/(1 - exp(-Em*2*F/R/T)) + vryr);
end
% diad space rate laws
alphaf = kopen_lcc/(1+exp(-(Em-Vhalf_lcc)/deltaV_lcc));
alphar_mode1 = kclose_lcc;
alphar_mode2 = zetalcc*kclose_lcc;
epsf00 = cds00*(kinactmin_lcc + (kinactmax_lcc - kinactmin_lcc)/(1+exp(-(Em - Vhalf_lcc)/deltaV_lcc)));
epsf01 = cds01*(kinactmin_lcc + (kinactmax_lcc - kinactmin_lcc)/(1+exp(-(Em - Vhalf_lcc)/deltaV_lcc)));
epsr = kdeinactmin_lcc + (kdeinactmax_lcc - kdeinactmin_lcc)/(1+exp((Em - Vhalf_lcc)/deltaV_lcc));
betaf00 = kopen_ryr/(1 + (Kryr/cds00)^2);
betaf10 = kopen_ryr/(1 + (Kryr/cds10)^2);
betar = kclose_ryr;
muf00 = kinactmin_ryr + (kinactmax_ryr - kinactmin_ryr)/(1 + (Kryr/cds00)^2);
muf10 = kinactmin_ryr + (kinactmax_ryr - kinactmin_ryr)/(1 + (Kryr/cds10)^2);
mur00 = kdeinactmax_ryr - (kdeinactmax_ryr - kdeinactmin_ryr)/(1 + (Kryr/cds00)^2);
mur10 = kdeinactmax_ryr - (kdeinactmax_ryr - kdeinactmin_ryr)/(1 + (Kryr/cds10)^2);
% note: the below ugly expressions were obtained from MAPLE
Pyocz1_mode1 = (alphaf+alphar_mode1+betaf00+betar)*alphaf*betar/...
((alphaf+alphar_mode1)*(alphaf*betaf10+alphaf*betar+betaf00*betar+betar^2+betar*alphar_mode1+betaf00*betaf10+alphar_mode1*betaf00+betar*betaf10));
Pycoz1_mode1 = alphar_mode1*(alphaf*betaf10+betaf00*betaf10+alphar_mode1*betaf00+betaf00*betar)/...
(alphaf*betaf00*betar+alphar_mode1*alphaf*betaf00+alphaf^2*betar+alphaf*betar^2+2*alphaf*betar*alphar_mode1+alphar_mode1*betaf00*betar+...
betaf00*alphar_mode1^2+alphar_mode1*betar^2+betar*alphar_mode1^2+betaf00*betaf10*alphaf+betaf00*betaf10*alphar_mode1+alphaf^2*betaf10+...
alphaf*betaf10*alphar_mode1+betar*betaf10*alphaf+betar*betaf10*alphar_mode1);
Pyccz1_mode1 = alphar_mode1*betar*(alphaf+betar+betaf10+alphar_mode1)/...
(alphaf*betaf00*betar+alphar_mode1*alphaf*betaf00+alphaf^2*betar+alphaf*betar^2+2*alphaf*betar*alphar_mode1+alphar_mode1*betaf00*betar+...
betaf00*alphar_mode1^2+alphar_mode1*betar^2+betar*alphar_mode1^2+betaf00*betaf10*alphaf+betaf00*betaf10*alphar_mode1+alphaf^2*betaf10+...
alphaf*betaf10*alphar_mode1+betar*betaf10*alphaf+betar*betaf10*alphar_mode1);
Pyooz1_mode1 = 1 - Pyocz1_mode1 - Pycoz1_mode1 - Pyccz1_mode1;
Pyoiz2_mode1 = alphaf/(alphaf+alphar_mode1);
Pyciz2_mode1 = alphar_mode1/(alphaf+alphar_mode1);
Pyocz1_mode2 = (alphaf+alphar_mode2+betaf00+betar)*alphaf*betar/...
((alphaf+alphar_mode2)*(alphaf*betaf10+alphaf*betar+betaf00*betar+betar^2+betar*alphar_mode2+betaf00*betaf10+alphar_mode2*betaf00+betar*betaf10));
Pycoz1_mode2 = alphar_mode2*(alphaf*betaf10+betaf00*betaf10+alphar_mode2*betaf00+betaf00*betar)/...
(alphaf*betaf00*betar+alphar_mode2*alphaf*betaf00+alphaf^2*betar+alphaf*betar^2+2*alphaf*betar*alphar_mode2+alphar_mode2*betaf00*betar+...
betaf00*alphar_mode2^2+alphar_mode2*betar^2+betar*alphar_mode2^2+betaf00*betaf10*alphaf+betaf00*betaf10*alphar_mode2+alphaf^2*betaf10+...
alphaf*betaf10*alphar_mode2+betar*betaf10*alphaf+betar*betaf10*alphar_mode2);
Pyccz1_mode2 = alphar_mode2*betar*(alphaf+betar+betaf10+alphar_mode2)/...
(alphaf*betaf00*betar+alphar_mode2*alphaf*betaf00+alphaf^2*betar+alphaf*betar^2+2*alphaf*betar*alphar_mode2+alphar_mode2*betaf00*betar+...
betaf00*alphar_mode2^2+alphar_mode2*betar^2+betar*alphar_mode2^2+betaf00*betaf10*alphaf+betaf00*betaf10*alphar_mode2+alphaf^2*betaf10+...
alphaf*betaf10*alphar_mode2+betar*betaf10*alphaf+betar*betaf10*alphar_mode2);
Pyooz1_mode2 = 1 - Pyocz1_mode2 - Pycoz1_mode2 - Pyccz1_mode2;
Pyoiz2_mode2 = alphaf/(alphaf+alphar_mode2);
Pyciz2_mode2 = alphar_mode2/(alphaf+alphar_mode2);
Pyioz3 = betaf00/(betaf00 + betar);
Pyicz3 = betar/(betaf00 + betar);
r1_mode1 = Pyocz1_mode1*muf10 + Pyccz1_mode1*muf00;
r1_mode2 = Pyocz1_mode2*muf10 + Pyccz1_mode2*muf00;
r2_mode1 = Pyoiz2_mode1*mur10 + Pyciz2_mode1*mur00;
r2_mode2 = Pyoiz2_mode2*mur10 + Pyciz2_mode2*mur00;
r3 = Pyicz3*muf00;
r4 = mur00;
r5_mode1 = Pyccz1_mode1*epsf00 + Pycoz1_mode1*epsf01;
r5_mode2 = Pyccz1_mode2*epsf00 + Pycoz1_mode2*epsf01;
r6 = epsr;
r7_mode1 = Pyciz2_mode1*epsf00;
r7_mode2 = Pyciz2_mode2*epsf00;
r8 = epsr;
phi_lcc = 1 - (1 - phi_lcc_BAR)*(1 - phi_lcc_CaMK);
phi_plb = 1 - (1 - phi_plb_BAR)*(1 - phi_plb_CaMK);
P01 = (1 - phi_lcc)*(z1_mode1*Pycoz1_mode1 + z3_mode1*Pyioz3) + ...
phi_lcc*(z1_mode2*Pycoz1_mode2 + z3_mode2*Pyioz3);
P10 = (1 - phi_lcc)*(z1_mode1*Pyocz1_mode1 + z2_mode1*Pyoiz2_mode1) + ...
phi_lcc*(z1_mode2*Pyocz1_mode2 + z2_mode2*Pyoiz2_mode2);
P11 = (1 - phi_lcc)*z1_mode1*Pyooz1_mode1 + ...
phi_lcc*z1_mode2*Pyooz1_mode2;
% diad space flux
Jds = P01*vds*(cds01 - cmyo) + P10*vds*(cds10 - cmyo) + P11*vds*(cds11 - cmyo);
Jryr = P01*vryr*(csr - cds01) + P11*vryr*(csr - cds11);
Jlcc = P10*vlcc*Em*2*F/R/T*(Cao*exp(-Em*2*F/R/T) - cds10)/(1 - exp(-Em*2*F/R/T)) + ...
P11*vlcc*Em*2*F/R/T*(Cao*exp(-Em*2*F/R/T) - cds11)/(1 - exp(-Em*2*F/R/T));
% serca flux
Jserca = (1 - phi_plb)*Jsercao/(1 + (Kserca/cmyo)^2) + ...
phi_plb*Jsercao/(1 + (zetaserca*Kserca/cmyo)^2);
% other fluxes
Jncx = -Jncxo*(Nai^3*exp(eta_ncx*F*Em/R/T)*Cao - Nao^3*exp((eta_ncx-1)*F*Em/R/T)*cmyo)/ ...
((Kncxn^3 + Nao^3)*(Kncxc + Cao)*(1 + kncxsat*exp((eta_ncx-1)*F*Em/R/T)));
Jpmca = Jpmca_max/(1 + (Kpmca/cmyo));
ECa = R*T/2/F*log(Cao/cmyo);
Jpmleak = gpmleak*(ECa - Em);
Jsrleak = vsrleak*(csr - cmyo);
% currents
Ilcc = 2*Jlcc*Vtot*F*1e9; %nA
Incx = Jncx*Vtot*F*1e9; %nA
Ipmca = 0; %pmca is electroneutral
Ileak = 2*Jpmleak*Vtot*F*1e9; %nA
% buffering
beta_myo = 1 + Bfluo*Kfluo/(cmyo + Kfluo)^2 + Bbuff_myo*Kdmyo/(cmyo + Kdmyo)^2;
beta_sr = 1 + Bbuff_sr*Kdsr/(csr + Kdsr)^2;
% beta-AR regulation
phi_lcc_BAR_ss = phi_lcc_BAR_max/(1 + (Kiso_lcc/ciso)^Hiso_lcc);
phi_plb_BAR_ss = phi_plb_BAR_max/(1 + (Kiso_plb/ciso)^Hiso_plb);
% derivatives
ydot = zeros(12,1);
ydot(1) = z2_mode1*r2_mode1 + z3_mode1*r6 - z1_mode1*(r5_mode1 + r1_mode1);
ydot(2) = z1_mode1*r1_mode1 + z4_mode1*r8 - z2_mode1*(r2_mode1 + r7_mode1);
ydot(3) = z1_mode1*r5_mode1 + z4_mode1*r4 - z3_mode1*(r6 + r3);
ydot(4) = z2_mode2*r2_mode2 + z3_mode2*r6 - z1_mode2*(r5_mode2 + r1_mode2);
ydot(5) = z1_mode2*r1_mode2 + z4_mode2*r8 - z2_mode2*(r2_mode2 + r7_mode2);
ydot(6) = z1_mode2*r5_mode2 + z4_mode2*r4 - z3_mode2*(r6 + r3);
ydot(7) = (Jds + Jpmleak + Jsrleak - Jncx - Jpmca - Jserca)/lambda_myo/beta_myo;
ydot(8) = (Jserca - Jryr - Jsrleak)/lambda_sr/beta_sr;
ydot(9) = (-theta + theta_ss)/tauAPD_BAR;
ydot(10) = (-thalf + thalf_ss)/tauAPD_H;
ydot(11) = (-phi_lcc_BAR + phi_lcc_BAR_ss)/tauBAR_lcc;
ydot(end) = (-phi_plb_BAR + phi_plb_BAR_ss)/tauBAR_plb;
if ttilde > 5e-3
Ia = 0;
else
Ia = 1;
end
% other output
out2 = [Ia; Ilcc; Incx; Ipmca; Ileak; Jds; Jserca; Jncx; Jpmca; Jpmleak; Jsrleak; Jryr; Em];
end
end