-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot_k_peak_time.py
executable file
·297 lines (275 loc) · 12.4 KB
/
plot_k_peak_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#!/usr/bin/env python3
''' AUTHOR: Neco Kriel
EXAMPLE:
plot_k_peak_time.py
(required)
-base_path $scratch/dyna288_Bk10/Re10/
-pre_name dyna288_Re10
(optional)
-debug False
-sub_folder spectFiles
-vis_folder visFiles
-file_start 0
-file_end np.Inf
'''
##################################################################
## MODULES
##################################################################
import os
import argparse
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import ticker, cm
from matplotlib.colors import LogNorm
from statistics import stdev, mean
##################################################################
## PREPARE TERMINAL/WORKSPACE/CODE
#################################################################
os.system('clear') # clear terminal window
plt.close('all') # close all pre-existing plots
mpl.style.use('classic') # plot in classic style
##################################################################
## FUNCTIONS
##################################################################
def str2bool(v):
'''
FROM:
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
'''
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def stringChop(var_string, var_remove):
''' stringChop
PURPOSE / OUTPUT:
Remove the occurance of the string 'var_remove' at both the start and end of the string 'var_string'.
'''
if var_string.endswith(var_remove):
var_string = var_string[:-len(var_remove)]
if var_string.startswith(var_remove):
var_string = var_string[len(var_remove):]
return var_string
def createFolder(folder_name):
''' createFolder
PURPOSE:
Create the folder passed as a filepath to inside the folder.
OUTPUT:
Commandline output of the success/failure status of creating the folder.
'''
if not(os.path.exists(folder_name)):
os.makedirs(folder_name)
print('SUCCESS: \n\tFolder created. \n\t' + folder_name)
print(' ')
else:
print('WARNING: \n\tFolder already exists (folder not created). \n\t' + folder_name)
print(' ')
def setupInfo(filepath):
''' setupInfo
PURPOSE:
Collect filenames that will be processed and the number of these files
'''
global bool_debug_mode
## save the the filenames to process
file_names = list(filter(meetsCondition, sorted(os.listdir(filepath))))
## check files
if bool_debug_mode:
print('The files in the filepath:')
print('\t' + filepath)
print('\tthat satisfied meetCondition are the files:')
print('\t\t' + '\n\t\t'.join(file_names))
print(' ')
## return data
return [file_names, int(len(file_names)/2)]
def createFilePath(names):
''' creatFilePath
PURPOSE / OUTPUT:
Turn an ordered list of names and concatinate them into a filepath.
'''
return ('/'.join([x for x in names if x != '']))
def meetsCondition(element):
global bool_debug_mode, file_end, file_start
## accept files that look like: Turb_hdf5_plt_cnt_*(mags.dat or vels.dat)
if (element.startswith('Turb_hdf5_plt_cnt_') and (element.endswith('mags.dat') or element.endswith('vels.dat'))):
## check that the file meets the minimum file number requirement
bool_domain_upper = (int(element.split('_')[4]) >= file_start)
if bool_debug_mode:
## return the first 5 files
return bool(bool_domain_upper and (int(element.split('_')[4]) <= 5))
elif file_end != np.Inf:
## return the files in the domain [file_start, file_end]
return bool(bool_domain_upper and (int(element.split('_')[4]) <= file_end))
else:
## return every file with a number greater than file_start
return bool(bool_domain_upper)
return False
def loadData(directory):
filedata = open(directory).readlines() # load in data
data = np.array([x.strip().split() for x in filedata[6:]]) # store all data. index: data[row, col]
data_x = list(map(float, data[:, 1])) # variable: wave number (k)
data_y = list(map(float, data[:, 15])) # variable: power spectrum
return data_x, data_y
##################################################################
## INPUT COMMAND LINE ARGUMENTS
##################################################################
global file_end, bool_debug_mode, filepath_base, file_start
ap = argparse.ArgumentParser(description='A bunch of input arguments')
## ------------------- DEFINE OPTIONAL ARGUMENTS
ap.add_argument('-debug', type=str2bool, default=False, required=False, help='Debug mode', nargs='?', const=True)
ap.add_argument('-sub_folder', type=str, default='spectFiles', required=False, help='Name of the folder where the data is stored')
ap.add_argument('-vis_folder', type=str, default='visFiles', required=False, help='Name of the plot folder')
ap.add_argument('-file_start', type=int, default=0, required=False, help='First file to process')
ap.add_argument('-file_end', type=int, default=np.Inf, required=False, help='Last file to process')
## ------------------- DEFINE REQUIRED ARGUMENTS
ap.add_argument('-base_path', type=str, required=True, help='Filepath to the base folder')
ap.add_argument('-pre_name', type=str, required=True, help='Name of figures')
## ---------------------------- OPEN ARGUMENTS
args = vars(ap.parse_args())
## ---------------------------- SAVE PARAMETERS
bool_debug_mode = args['debug'] # enable/disable debug mode
file_start = args['file_start'] # starting processing frame
file_end = args['file_end'] # the last file to process
## ---------------------------- SAVE FILEPATH PARAMETERS
filepath_base = args['base_path'] # home directory
folder_vis = args['vis_folder'] # subfolder where animation and plots will be saved
folder_sub = args['sub_folder'] # sub-subfolder where data is stored's name
pre_name = args['pre_name'] # name of figures
## ---------------------------- ADJUST ARGUMENTS
## remove the trailing '/' from the input filepath and plot folder
if filepath_base.endswith('/'):
filepath_base = filepath_base[:-1]
## replace any '//' with '/'
filepath_base = filepath_base.replace('//', '/')
## remove '/' from variable names
folder_vis = stringChop(folder_vis, '/')
folder_sub = stringChop(folder_sub, '/')
pre_name = stringChop(pre_name, '/')
## ---------------------------- START CODE
print('Began running the spectra plotting code in base filepath: \n\t' + filepath_base)
print('Visualising folder: ' + folder_vis)
print('Figure name: ' + pre_name)
print(' ')
##################################################################
## USER VARIABLES
##################################################################
t_eddy = 10 # number of spectra files per eddy turnover # TODO: input?
## set the figure's axis limits
xlim_min = 1.0
xlim_max = 1.3e+02
##################################################################
## INITIALISING VARIABLES
##################################################################
filepath_data = createFilePath([filepath_base, folder_sub])
filepath_plot = createFilePath([filepath_base, folder_vis, 'plotSpectra']) # folder where plots will be saved
file_names, num_time_points = setupInfo(filepath_data)
createFolder(filepath_plot) # create folder where plots are saved
fig = plt.figure(figsize=(10, 7), dpi=100)
for cur_iter in range(num_time_points):
#################### START OF LOOP
####################################
cur_time = cur_iter/t_eddy # normalise time point by eddy-turnover time
if ((100 * cur_iter/num_time_points) % 5 < 0.1):
print('Loading data... %0.3f%% complete'%(100 * cur_iter/num_time_points))
#################### LOAD DATA
##############################
name_file_mag = 'Turb_hdf5_plt_cnt_' + '{0:04}'.format(cur_iter) + '_spect_mags.dat' # magnetic file
data_x, data_y = loadData(filepath_data + '/' + name_file_mag) # magnetic power spectrum
if (cur_iter == 0):
#################### INITIALISE DATA
##############################
## initialise the list of time points
time_points = []
## initialise the list of peaks values and their standard deviation
peak_k = []
peak_k_std = []
## initialise the results matrix
spectra_matrix = np.zeros([num_time_points, len(data_x)])
#################### ANALYSE DATA
##############################
## append the current time point
time_points.append(cur_time)
## calculate the standard deviation of the spectra
if (cur_iter == 0): peak_k_std.append(0)
else: peak_k_std.append(stdev(np.log10(data_y)))
## calculate the peak of the spectra
peak_k.append(data_x[data_y.index(max(data_y))])
## save the magnetic power spectrum
for k in range(len(data_x)):
spectra_matrix[cur_iter][k] = data_y[k]
##################################################################
## CALCULATE MOVING AVERAGE and STANDARD DEVIATION BAND OF K_PEAK
##################################################################
## calculate moving average
window_size = 5 # moving average window size
peak_k_moving_ave = []
for tmp_index in range(len(peak_k)):
if tmp_index < window_size:
peak_k_moving_ave.append(peak_k[tmp_index])
else:
## calculate moving average of the magnetic spectra peak
peak_k_moving_ave.append(sum(peak_k[tmp_index : tmp_index + window_size]) / window_size)
## calculate standard deviation band
peak_k_std_low = []
peak_k_std_high = []
for val, std_val in zip(peak_k_moving_ave, peak_k_std):
peak_k_std_low.append(val - std_val)
peak_k_std_high.append(val + std_val)
##################################################################
## PLOT DATA
##################################################################
## plot heatmap
fig, ax = plt.subplots()
mag_plot = ax.pcolormesh(data_x, time_points, spectra_matrix, cmap='plasma', norm=LogNorm())
# plot peak of magnetic spectra
ax.fill_betweenx(time_points, peak_k_std_low, peak_k_std_high, facecolor='black', alpha=0.2)
plt.plot(peak_k_moving_ave, time_points, 'k-')
##################################################################
## LABEL and ADJUST PLOT
##################################################################
print('\nLabelling plot...\n')
## add colour bar
ax = plt.gca()
cbar = ax.figure.colorbar(mag_plot, ax=ax)
cbar.ax.set_ylabel(r'$\mathcal{P}_{B}(k)$', fontsize=28, rotation=0, va="bottom", labelpad=45)
## scale axis
plt.xscale('log')
## set axis limits
plt.xlim(xlim_min, xlim_max)
plt.ylim(1, cur_time)
## label axies
plt.xlabel(r'$k$', fontsize=28, rotation=0)
plt.ylabel(r'$t/T$', fontsize=28, rotation=0, labelpad=30)
## add markers
peak_k_ave = mean(peak_k_moving_ave)
plt.text(peak_k_ave*1.05, cur_time*0.8, r'$k_{max}$', ha='left', va='bottom', fontsize=28)
if ('Pm100'.lower() in pre_name.lower()):
k_0 = 2
Re = 10
Pm = 100
k_nu = Re**(3/4) * k_0
k_eta = Re**(1/4) * (Re*Pm)**(1/2) * k_0
plt.plot([k_0, k_0], [1, cur_time], 'k--')
plt.plot([k_nu, k_nu], [1, cur_time], 'k--')
plt.plot([k_eta, k_eta], [1, cur_time], 'k--')
plt.text(k_0*0.95, cur_time*0.8, r'$k_0$', ha='right', va='bottom', fontsize=28)
plt.text(k_nu*1.05, cur_time*0.8, r'$k_\nu$', ha='left', va='bottom', fontsize=28)
plt.text(k_eta*0.95, cur_time*0.8, r'$k_\eta$', ha='right', va='bottom', fontsize=28)
## major grid
plt.grid(which='major', linestyle='-', linewidth='0.5', color='black', alpha=0.35)
## minor grid
plt.grid(which='minor', linestyle='--', dashes=(5, 2.5), linewidth='0.5', color='black', alpha=0.2)
##################################################################
## SAVE FIGURE
##################################################################
print('Saving figure...')
fig_name = createFilePath([filepath_plot, pre_name]) + '_k_peak_time.png'
plt.savefig(fig_name, bbox_inches='tight', dpi=300)
plt.close()
print('Figure saved: ' + fig_name)
print(' ')
## END OF PROGRAM