-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainval_net_MEAA.py
419 lines (345 loc) · 17.4 KB
/
trainval_net_MEAA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# add Attention
# coding:utf-8
# --------------------------------------------------------
# Pytorch multi-GPU Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import pprint
import pdb
import time
import _init_paths
import torch
from torch.autograd import Variable
import torch.nn as nn
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.roibatchLoader import roibatchLoader
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from model.utils.net_utils import weights_normal_init, save_net, load_net, \
adjust_learning_rate, save_checkpoint, clip_gradient, \
FocalLoss, sampler, calc_supp, EFocalLoss, CrossEntropy, \
prob2entropy, \
get_gc_discriminator
from model.utils.parser_func_multi import parse_args, set_dataset_args
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
args = set_dataset_args(args)
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
print('Using config:')
pprint.pprint(cfg)
np.random.seed(cfg.RNG_SEED)
# torch.backends.cudnn.benchmark = True
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
# train set
# -- Note: Use validation set and disable the flipped to enable faster loading.
cfg.TRAIN.USE_FLIPPED = True
cfg.USE_GPU_NMS = args.cuda
# source dataset
print('\nargs.imdb_name: ', args.imdb_name)
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
train_size = len(roidb)
# target dataset
imdb_t, roidb_t, ratio_list_t, ratio_index_t = combined_roidb(args.imdb_name_target)
train_size_t = len(roidb_t)
print('{:d} source roidb entries'.format(len(roidb)))
print('{:d} target roidb entries'.format(len(roidb_t)))
output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
if not os.path.exists(output_dir):
os.makedirs(output_dir)
sampler_batch = sampler(train_size, args.batch_size)
sampler_batch_t = sampler(train_size_t, args.batch_size)
dataset_s = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
imdb.num_classes, training=True)
dataloader_s = torch.utils.data.DataLoader(dataset_s, batch_size=args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers)
dataset_t = roibatchLoader(roidb_t, ratio_list_t, ratio_index_t, args.batch_size, \
imdb.num_classes, training=True)
dataloader_t = torch.utils.data.DataLoader(dataset_t, batch_size=args.batch_size,
sampler=sampler_batch_t, num_workers=args.num_workers)
# initilize the tensor holder here.
im_data = torch.FloatTensor(1)
im_info = torch.FloatTensor(1)
num_boxes = torch.LongTensor(1)
gt_boxes = torch.FloatTensor(1)
# ship to cuda
if args.cuda:
im_data = im_data.cuda()
im_info = im_info.cuda()
num_boxes = num_boxes.cuda()
gt_boxes = gt_boxes.cuda()
# make variable
im_data = Variable(im_data)
im_info = Variable(im_info)
num_boxes = Variable(num_boxes)
gt_boxes = Variable(gt_boxes)
if args.cuda:
cfg.CUDA = True
# initilize the network here.
from model.faster_rcnn.vgg16_MEAA import vgg16
from model.faster_rcnn.resnet_MEAA import resnet
if args.net == 'vgg16':
fasterRCNN = vgg16(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic, gc1 = args.gc1, gc2=args.gc2, gc3 = args.gc3)
elif args.net == 'res101':
fasterRCNN = resnet(imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic,
gc1 = args.gc1, gc2=args.gc2, gc3 = args.gc3)
elif args.net == 'res50':
fasterRCNN = resnet(imdb.classes, 50, pretrained=True, class_agnostic=args.class_agnostic, context=args.context)
else:
print("network is not defined")
pdb.set_trace()
fasterRCNN.create_architecture()
# d_aux = get_gc_discriminator()
# print(fasterRCNN)
# exit()
lr = cfg.TRAIN.LEARNING_RATE
lr = args.lr
# tr_momentum = cfg.TRAIN.MOMENTUM
# tr_momentum = args.momentum
params = []
for key, value in dict(fasterRCNN.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params': [value], 'lr': lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
if args.optimizer == "adam":
lr = lr * 0.1
optimizer = torch.optim.Adam(params)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
if args.cuda:
fasterRCNN.cuda()
if args.resume:
checkpoint = torch.load(args.load_name)
args.session = checkpoint['session']
args.start_epoch = checkpoint['epoch']
fasterRCNN.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
cfg.POOLING_MODE = checkpoint['pooling_mode']
print("loaded checkpoint %s" % (args.load_name))
if args.mGPUs:
fasterRCNN = nn.DataParallel(fasterRCNN)
iters_per_epoch = int(10000 / args.batch_size) # len(dataloader_s)#
if args.ef:
FL = EFocalLoss(class_num=2, gamma=args.gamma)
else:
FL = FocalLoss(class_num=2, gamma=args.gamma)
if args.use_tfboard:
from tensorboardX import SummaryWriter
logger = SummaryWriter("logs")
count_iter = 0
for epoch in range(args.start_epoch, args.max_epochs + 1):
# setting to train mode
fasterRCNN.train()
loss_temp = 0
start = time.time()
if epoch % (args.lr_decay_step + 1) == 0:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
data_iter_s = iter(dataloader_s)
data_iter_t = iter(dataloader_t)
for step in range(iters_per_epoch):
try:
data_s = next(data_iter_s)
except:
data_iter_s = iter(dataloader_s)
data_s = next(data_iter_s)
try:
data_t = next(data_iter_t)
except:
data_iter_t = iter(dataloader_t)
data_t = next(data_iter_t)
#eta = 1.0
count_iter += 1
#put source data into variable
im_data.data.resize_(data_s[0].size()).copy_(data_s[0])
im_info.data.resize_(data_s[1].size()).copy_(data_s[1])
gt_boxes.data.resize_(data_s[2].size()).copy_(data_s[2])
num_boxes.data.resize_(data_s[3].size()).copy_(data_s[3])
fasterRCNN.zero_grad()
rois, cls_prob, bbox_pred, \
rpn_loss_cls, rpn_loss_box, \
RCNN_loss_cls, RCNN_loss_bbox, \
rois_label,out_d_inst, out_d1, out_d2, out_d3, \
feat1_p, feat2_p, feat3_p = fasterRCNN(im_data, im_info, gt_boxes, num_boxes)
# cam_out_d1, cam_out_d2, cam_out_d3
loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \
+ RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
# + cls_prob_va # minimize variance, maximize entropy
loss_temp += loss.item()
# source domain label
#---
# domain_s1 = Variable(torch.zeros(cam_out_d1.size(0)).long().cuda())
# domain_s1_cam = Variable(torch.zeros(cam_out_d2.size(0)).long().cuda())
# domain_s3_cam = Variable(torch.zeros(cam_out_d3.size(0)).long().cuda())
# source_feat2_p = source_feat3_p = Variable(torch.zeros(feat2_p.size(0))).long().cuda()
# source_feat2_p = source_feat3_p = Variable(torch.zeros(feat2_p.size(1))).long().cuda()
#---
domain_s2 = domain_s3 = Variable(torch.zeros(out_d2.size(0)).long().cuda())
# print('feat2_p: ', feat2_p.shape) #([1, 2])
# print('out_d2: ', out_d2.shape) #([1, 2])
# print('source_feat2_p: ', source_feat2_p.shape) # [1]
# print('domain_s2: ', domain_s2.shape) # [1]
domain_s_p = Variable(torch.zeros(out_d_inst.size(0)).long().cuda())
# k=1th loss
dloss_s1 = 0.5 * torch.mean(out_d1 ** 2)
# k=2nd loss
dloss_s2 = 0.5 * CrossEntropy(out_d2, domain_s2) * 0.15
# k = 3rd loss
dloss_s3 = 0.5 * FL(out_d3, domain_s3)
# instance alignment loss
dloss_s_p = 0.5 * FL(out_d_inst, domain_s_p)
# new losses
feat1_s_p = 0.5 * torch.mean(feat1_p ** 2)
feat2_s_p = 0.5 * torch.mean(feat2_p ** 2)
feat3_s_p = 0.5 * torch.mean(feat3_p ** 2)
# print('\nfeat2_p: ', feat2_p.shape, feat2_p)
# print('\nsource+feat2+p: ', source_feat2_p.shape)
# feat2_s_p = 0.5 * CrossEntropy(feat2_p.squeeze(), source_feat2_p) * 0.2
# feat3_s_p = 0.5 * CrossEntropy(feat3_p.squeeze(), source_feat3_p)
# dloss_s12 = 0.5 * torch.mean(out_d12 ** 2)
# dloss_s13 = 0.5 * torch.mean(out_d13 ** 2)
# dloss_s1_cam = 0.5 * CrossEntropy(cam_out_d1, domain_s1) * 0.15
# dloss_s1_cam2 = 0.5 * CrossEntropy(cam_out_d2, domain_s1_cam) * 0.15
# dloss_s1_cam3 = 0.5 * CrossEntropy(cam_out_d3, domain_s3_cam) * 0.15
#put target data into variable
im_data.data.resize_(data_t[0].size()).copy_(data_t[0])
im_info.data.resize_(data_t[1].size()).copy_(data_t[1])
#gt is empty
# gt_boxes.data.resize_(1, 1, 5).zero_()
num_boxes.data.resize_(1).zero_()
out_d_inst, out_d1, out_d2, out_d3, \
feat1_p, feat2_p, feat3_p = fasterRCNN(im_data, im_info, gt_boxes, num_boxes, target=True)
# cam_out_d1, cam_out_d2, cam_out_d3 = fasterRCNN(im_data, im_info, gt_boxes, num_boxes, target=True)
# target domain label
#---
# domain_t1 = Variable(torch.ones(cam_out_d1.size(0)).long().cuda())
# domain_t1_cam = Variable(torch.ones(cam_out_d2.size(0)).long().cuda())
# domain_t3_cam = Variable(torch.ones(cam_out_d3.size(0)).long().cuda())
# target_feat2_p = target_feat3_p = Variable(torch.zeros(feat2_p.size(0))).long().cuda()
#---
domain_t2 = domain_t3 = Variable(torch.ones(out_d2.size(0)).long().cuda())
domain_t_p = Variable(torch.ones(out_d_inst.size(0)).long().cuda())
# k=1th loss
dloss_t1 = 0.5 * torch.mean((1 - out_d1) ** 2)
# k=2nd loss
dloss_t2 = 0.5 * CrossEntropy(out_d2, domain_t2) * 0.15
# k = 3rd loss
dloss_t3 = 0.5 * FL(out_d3, domain_t3)
# instance alignment loss
dloss_t_p = 0.5 * FL(out_d_inst, domain_t_p)
# new losses
feat1_t_p = 0.5 * torch.mean((1 - feat1_p) ** 2)
feat2_t_p = 0.5 * torch.mean((1 - feat2_p) ** 2)
feat3_t_p = 0.5 * torch.mean((1 - feat3_p) ** 2)
# feat2_t_p = 0.5 * CrossEntropy(feat2_p, target_feat2_p) * 0.2
# feat3_t_p = 0.5 * CrossEntropy(feat3_p, target_feat3_p)
# dloss_t12 = 0.5 * torch.mean((1 - out_d12) ** 2)
# dloss_t13 = 0.5 * torch.mean((1 - out_d13) ** 2)
# dloss_t1_cam = 0.5 * CrossEntropy(cam_out_d1, domain_t1) * 0.15
# dloss_t1_cam2 = 0.5 * CrossEntropy(cam_out_d2, domain_t1_cam) * 0.15
# dloss_t1_cam3 = 0.5 * CrossEntropy(cam_out_d3, domain_t3_cam) * 0.15
if args.dataset == 'sim10k':
loss += (dloss_s1 + dloss_t1 + dloss_s2 + \
dloss_t2 + dloss_s3 + dloss_t3 + dloss_s_p + dloss_t_p + \
feat1_s_p + feat2_s_p + feat3_s_p + \
feat1_t_p + feat2_t_p + feat3_t_p) * args.eta
else:
# full losses
loss += (dloss_s1 + dloss_t1 + dloss_s2 + \
dloss_t2 + dloss_s3 + dloss_t3 + dloss_s_p + dloss_t_p + \
feat1_s_p + feat2_s_p + feat3_s_p + \
feat1_t_p + feat2_t_p + feat3_t_p)
# remove D2, D3
# loss += (dloss_s1 + dloss_t1 + dloss_s_p + dloss_t_p + \
# feat1_s_p + feat2_s_p + feat3_s_p + \
# feat1_t_p + feat2_t_p + feat3_t_p)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % args.disp_interval == 0:
end = time.time()
if step > 0:
loss_temp /= (args.disp_interval + 1)
if args.mGPUs:
loss_rpn_cls = rpn_loss_cls.mean().item()
loss_rpn_box = rpn_loss_box.mean().item()
loss_rcnn_cls = RCNN_loss_cls.mean().item()
loss_rcnn_box = RCNN_loss_bbox.mean().item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
else:
loss_rpn_cls = rpn_loss_cls.item()
loss_rpn_box = rpn_loss_box.item()
loss_rcnn_cls = RCNN_loss_cls.item()
loss_rcnn_box = RCNN_loss_bbox.item()
dloss_s1 = dloss_s1.item()
dloss_t1 = dloss_t1.item()
dloss_s2 = dloss_s2.item()
dloss_t2 = dloss_t2.item()
dloss_s3 = dloss_s3.item()
dloss_t3 = dloss_t3.item()
dloss_s_p = dloss_s_p.item()
dloss_t_p = dloss_t_p.item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
# logger = open('./logger/logger_1_local_2_global_3_fwd_with_CE_retry6.txt', 'a')
# logger.write("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
# % (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
print("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
% (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
# logger.write("\nfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end - start))
print("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end - start))
# logger.write(
# "\nrpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f, dloss s1: %.4f, dloss t1: %.4f, dloss s2: %.4f, dloss t2: %.4f, dloss s3: %.4f, dloss t3: %.4f, dinst_s: %.4f, dinst_t: %.4f, eta: %.4f \n" \
# % (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box, dloss_s1, dloss_t1, dloss_s2, dloss_t2, dloss_s3, dloss_t3, dloss_s_p, dloss_t_p,
# args.eta))
print(
"\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f, dloss s1: %.4f, dloss t1: %.4f, dloss s2: %.4f, dloss t2: %.4f, dloss s3: %.4f, dloss t3: %.4f, dinst_s: %.4f, dinst_t: %.4f, \
eta: %.4f"\
% (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box, dloss_s1, dloss_t1, dloss_s2, dloss_t2, dloss_s3, dloss_t3, dloss_s_p, dloss_t_p,
args.eta))
# logger.close()
if args.use_tfboard:
info = {
'loss': loss_temp,
'loss_rpn_cls': loss_rpn_cls,
'loss_rpn_box': loss_rpn_box,
'loss_rcnn_cls': loss_rcnn_cls,
'loss_rcnn_box': loss_rcnn_box
}
logger.add_scalars("logs_s_{}/losses".format(args.session), info,
(epoch - 1) * iters_per_epoch + step)
loss_temp = 0
start = time.time()
save_name = os.path.join(output_dir,
'globallocal_target_{}_eta_{}_gc1_{}_gc2_{}_gc3_{}_gamma_{}_session_{}_epoch_{}_step_{}.pth'.format(
args.dataset_t,args.eta,
args.gc1, args.gc2, args.gc3, args.gamma,
args.session, epoch,
step))
save_checkpoint({
'session': args.session,
'epoch': epoch + 1,
'model': fasterRCNN.module.state_dict() if args.mGPUs else fasterRCNN.state_dict(),
'optimizer': optimizer.state_dict(),
'pooling_mode': cfg.POOLING_MODE,
'class_agnostic': args.class_agnostic,
}, save_name)
print('save model: {}'.format(save_name))
if args.use_tfboard:
logger.close()