-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath-460-unique-proof.tex
241 lines (171 loc) · 7.32 KB
/
math-460-unique-proof.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{-8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Dr.\ Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\newcommand{\rational}{\mathbf{Q}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Theorem}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}
\newtheorem{myfakeproof}{Fake Proof}
\newtheorem{mybadformproof}{Bad Form Proof}
\newtheorem{hurestic}{Hurestic}
%\usepackage{array} % for \newcolumntype macro
%\newcolumntype{L}{>{$}l<{$}} % math-mode version of "l" column type
\newenvironment{alphalist}{
\vspace{-0.0in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\newenvironment{snowflakelist}{
\vspace{-0.4in}
\begin{enumerate}[\textleaf]
\addtolength{\itemsep}{-1.2\itemsep}}
{\end{enumerate}}
\newenvironment{checklist}{
\begin{enumerate}[\checkmark]
\addtolength{\itemsep}{-1.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
\usepackage{array}
\newcolumntype{C}{>$c<$}
\newcommand{\llnot}{\lnot \,} % is accepted
%------------------
\subtitle{Lesson 9}
\title{\textbf{A template for uniqueness}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
%{
% \inst{1}%
% ``The secret of getting ahead is getting started.'' Mark Twain
% }
\date{}
%--------
%usepackage[usenames,dvipsnames,svgnames,table]{color}
\begin{document}
\frame{\titlepage}
\begin{frame}{Uniqueness proofs}
Some propositions assert that there is at most one such thing; example:
\begin{myth} For every \(x \in \reals_{> 0} \) there is at most one \(z \in \reals_{> 0} \) such that
\(z^2 = x\). \end{myth}
\vspace{0.3in}
\begin{checklist}
\item Generically, this is an \emph{uniqueness result}.
\vspace{0.1in}
\item In mathematics, ``unique'' means \emph{exactly} one.
\vspace{0.1in}
\item A \textbf{good way} to prove such a theorem is to assume that there are two such objects and show that they are equal.
\vspace{0.1in}
\item A \textbf{verbose way} to prove such a theorem is to assume that there are two such objects that are unequal and to show a contradiction.
\end{checklist}
\end{frame}
\begin{frame}{Good example}
\begin{myproof} Let \(x \in \reals_{> 0} \) and suppose that \(z_1, z_2 \in \reals_{> 0} \) and \(z_1^2 = x\) and \(z_2^2 = x\). We have
\begin{align*}
0 &= x - x, &\mbox{(arithmetic)} \\
&= z_1^2 - z_2^2, &\mbox{(substitute for } z_1, z_2)\\
&= (z_1 - z_2)(z_1+z_2), &\mbox{(factor)} \\
&= [z_1 - z_2= 0] \lor [z_1 + z_2 = 0]. &\mbox{(algebra fact)}
\end{align*}
But \(z_1+z_2 \neq 0\) because both \(z_1\) and \(z_2\) are positive. So \(z_1 - z_2 = 0\); therefore \(z_1 = z_2\).
\end{myproof}
\end{frame}
\begin{frame}{Verbose (=bad) example}
\begin{myproof} Let \(x \in \reals_{> 0} \) and suppose that \(z_1, z_2 \in \reals_{> 0} \) and \(z_1^2 = x\) and \(z_2^2 = x\). For contradiction, suppose \(z_1 \neq z_2\) We have
\begin{align*}
0 &= x - x, & \mbox{(arithmetic)} \\
&= z_1^2 - z_2^2, & \mbox{(substitute for } z_1, z_2)\\
&= (z_1 - z_2)(z_1+z_2), & \mbox{(factor)} \\
&= [z_1 - z_2= 0] \lor [z_1 + z_2 = 0]. & \mbox{(algebra fact)}
\end{align*}
But \(z_1+z_2 \neq 0\) because both \(z_1\) and \(z_2\) are positive. And by assumption \(z_1 - z_2 \neq 0\); thus \( (z_1 - z_2)(z_1+z_2) \neq 0\). This contradicts \((z_1 - z_2)(z_1+z_2) = 0\); therefore \(z_1 = z_2\).
\end{myproof}
\begin{checklist}
\item The proof by contradiction is longer than the direct proof.
\item Concise and intelligible proofs are always better than a longer proof.
\end{checklist}
\end{frame}
\begin{frame}{Grubby practice}
\begin{myth} There is at most one \(x \in \reals\) such that \(x^5 + x^3 + 1 = 0\). \end{myth}
\begin{myproof} Suppose \(a,b \in \reals\) and that \(a^5 + a^3 + 1= 0\) and \(b^5 + b^3 + 1= 0\). We have
\begin{align*}
0 &= (a^5 + a^3 + 1) - (b^5 + b^3 + 1), \\
&= \left( a-b\right) \, \left( {{b}^{4}}+a\, {{b}^{3}}+{{a}^{2}}\, {{b}^{2}}+{{b}^{2}}+{{a}^{3}} b+a b+{{a}^{4}}+{{a}^{2}}\right).
\end{align*}
Either \(a-b = 0\) or \( {{b}^{4}}+a\, {{b}^{3}}+{{a}^{2}}\, {{b}^{2}}+{{b}^{2}}+{{a}^{3}} b+a b+{{a}^{4}}+{{a}^{2}}= 0\). But the second is a sum of nonnegative terms, so the only way for it to vanish is if \(a=0\) and \(b=0\); for either case, we have \(a=0\) and \(b=0\).
\end{myproof}
\begin{checklist}
\item That's a great deal of grubby algebra.
\item But a reader can check it if s/he wishes.
\end{checklist}
\end{frame}
\begin{frame}{When grubby algebra fails}
\begin{myth} There is at most one \(x \in \reals_{\geq 0} \) such that \(\sqrt{x+1}-\sqrt{x}-\sqrt{6}+\sqrt{5}\). \end{myth}
\begin{enumerate}
\item One such number is \(5\).
\item Following the pattern of the previous example leads to factoring
\[
\sqrt{a+1}-\sqrt{a} - (\sqrt{b+1}-\sqrt{b})
\]
Maybe I don't know enough algebra, but I'm stuck.
\item But a bit of calculus shows that the function \(F = x \in \reals_{\geq 0} \mapsto \sqrt{x+1}-\sqrt{x}-\sqrt{6}+\sqrt{5}\) decreases.
\end{enumerate}
\end{frame}
\begin{frame}{Similarly}
\begin{myproof} Let \(F = x \in \reals_{\geq 0} \mapsto \sqrt{x+1}-\sqrt{x}-\sqrt{6}+\sqrt{5}\). This derivative of \(F\) is everywhere negative, so this function is decreasing.
Suppose \(F(a) = 0\) and \(F(b) = 0\). Either \(a < b\), \(a = b\), or \(a > b\). For the case \(a < b\), we have
\begin{align*}
[a < b ] \implies [F(a) < F(b)] \implies [0 < 0]
\end{align*}
But \(0 < 0\) is false, so \(a < b\) is false. For the case \(a > b\), we have
\begin{align*}
[a > b ] \implies [F(a) > F(b)] \implies [0 > 0]
\end{align*}
Again, \(0 > 0\) is false, so the assumption \(a > b\) is also false; since both \(a < b\) and \(a > b\) are false, we've shown that \(a=b\).
\end{myproof}
\end{frame}
\end{document}