-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath-460-sets.tex
648 lines (473 loc) · 22.1 KB
/
math-460-sets.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{-8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Dr.\ Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Proposition}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}
\newtheorem{mycounterexample}{Counterexample}
\newtheorem{hurestic}{Hurestic}
%\usepackage{array} % for \newcolumntype macro
%\newcolumntype{L}{>{$}l<{$}} % math-mode version of "l" column type
\newenvironment{alphalist}{
%\vspace{-0.4in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\usepackage{pifont}
\newenvironment{checklist}{
\begin{enumerate}[\ding{51}]
\addtolength{\itemsep}{-0.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
\newcommand{\llnot}{\lnot \,} % is accepted
%\subtitle{Lesson 3}
\title{\textbf{Sets}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
%{
% \inst{1}%
% ``The secret of getting ahead is getting started.'' Mark Twain
% }
\date{}
%\usepackage{courier}
%\lstset{basicstyle=\ttfamily\footnotesize,breaklines=true}
%\lstset{framextopmargin=50pt,frame=bottomline}
%\begin{document}
%--------
%usepackage[usenames,dvipsnames,svgnames,table]{color}
\begin{document}
\frame{\titlepage}
\begin{frame}{Sets}
\begin{myqdef} We don't attempt to define a set, but we describe a set as a collection of things, often called \emph{members}.
The members of a set can be numbers, ordered pairs, functions, or sets themselves. In a bit, we'll learn that there are some things that might appear to be valid sets, but really are not sets.
\end{myqdef}
\end{frame}
\begin{frame}
Here are some examples of sets:
\begin{alphalist}
\item $\{46, 107\}$ is a set with two members, namely 46 and 107. We reserve the curly braces to delineate a set.
\item $\{46, \{46, 107 \} \}$ is a set with two members, namely 46 and \(\{46, 107 \}\). One member of this set is an integer, but the other is a set with two members--that's OK.
\item $\{0,1,2,3, \dots \}$ is apparently the set of all nonnegative integers. I say apparently because the ellipses (the $\dots$) isn't entirely clear.
\item $\{ \}$ is a set with no members.
\end{alphalist}
\end{frame}
\begin{frame}{Named Sets}
We'll use the following names for subsets of real numbers:
\begin{align*}
&\reals = \mbox{the set of real numbers}, \\
& \amsbb{R} = \mbox{the set of real numbers for handwritten text}, \\
&\reals_{> 0} = \{x \in \reals \mid x > 0\}, \\
&\reals_{\neq 0} = \{x \in \reals \mid x \neq 0\}, \mbox{(and similarly for other subscripts)} \\
&\integers = \mbox{the set of integers}, \\
& \amsbb{Z} = \mbox{ the set of integers for handwritten text}, \\
&\mathbf{Q} = \mbox{the set of rational numbers}, \\
& \amsbb{Q} = \mbox{ the set of rational numbers for handwritten text}, \\
&\varnothing = \mbox{A set with no members, that is the empty set}
\end{align*}
\end{frame}
\begin{frame}{Membership}
For a set $A$, we define a predicate (boolean valued function) as
\[
x \in A = \begin{cases} \mathrm{T} & \mbox{ if } x \mbox{ is a member of } A \\
\mathrm{F} & \mbox{ if } x \mbox{ is not member of } A
\end{cases}
\]
For example:
\begin{alphalist}
\item $ 107 \in \{46, 107\} = \mathrm{T}$
\item $ \{107 \} \in \{46, \{107 \} \} = \mathrm{T}$
\item $ \{107 \} \in \{46, 107 \} = \mathrm{F}$
\end{alphalist}
\end{frame}
\begin{frame}{Set Operators}
\begin{mydef}
Let \(A\) and \(B\) be sets. Define the set \emph{union, intersection}, and \emph{difference}
\begin{align*}
A \cap B &= \{x \mid (x \in A)\land (x \in B) \}, \\
A \cup B &= \{x \mid (x \in A) \lor (x \in B) \}, \\
A \setminus B &= \{x \mid (x \in A) \land (x \notin B) \},
\end{align*}
respectively.
\end{mydef}
\end{frame}
\begin{frame}{Set (an) example}
\begin{myex}
We have
\begin{align*}
\{6, 107\} \cap \{28,107\} &= \{107\}, \\
\{6, 107\} \cup \{28,107\} &= \{6,28, 107\}, \\
\{6, 107\} \setminus \{28,107\} &= \{6\}, \\
\{28, 107\} \setminus \{6,107\} &= \{28\}.
\end{align*}
\end{myex}
\begin{checklist}
\item The last two examples show that in general \(A \setminus B \neq B \setminus A\).
\item The set difference is so much like real number subtraction, sometimes the symbol "-" is used instead of \(\setminus\).
\end{checklist}
\end{frame}
\begin{frame}{Set predicates}
\begin{mydef}
Let \(A\) and \(B\) be sets. Define
\begin{align*}
A \subset B &\equiv (\forall x \in A)(x \in B),\\
A = B &\equiv (A \subset B) \land (B \subset A).
\end{align*}
\end{mydef}
Specializing \(A \subset B\) to \(A = \varnothing\) gives
\[
\left[\varnothing \subset B \right] \equiv (\forall x \in \varnothing)(x \in B) \equiv \mbox{true}.
\]
We've shown that:
\begin{myth} Thus for all sets \(A\) and for any empty set \(\varnothing\), we have \(\varnothing \subset A\). \end{myth}
\end{frame}
\begin{frame}{Set equality}
To show that sets \(A\) and \(B\) are equal, we almost always prove that \(A \subset B\) and \(B \subset A\). If a proposition has the form
\begin{myth} If \(H_1, H_2, \dots\), and \( H_n\), then \(A = B\). \end{myth}
where \(H_1, H_2, \dots H_n\) is the hypothesis, a template for proving the theorem is
\begin{myproof} Suppose \(x \in A\). We'll show that \(x \in B\). Since \(x \in A, H_1, H_2, \dots\) and \( H_n\), we have \dots; therefore \(x \in B\).
\quad Suppose \(x \in B\). We'll show that \(x \in A\). Since \(x \in B, H_1, H_2, \dots\) and \(H_n\), we have \dots; therefore \(x \in A\).
\end{myproof}
\begin{enumerate}
\item Notice how in the first case we append \(x \in A\) to the hypothesis; and in the second case, we append \(x \in B\).
\end{enumerate}
\end{frame}
\begin{frame}{Establish notation}
\begin{myth} The set union is associative. \end{myth}
\begin{myproof} Let \(A,B\), and \(C\) be sets. We'll show that \(A \cup (B \cup C) = (A \cup B) \cup C\). Our proof uses the fact that
the disjunction is associative; we have
\begin{align*}
A \cup (B \cup C) &= \{x \mid (x \in A) \lor (x \in B \cup C) \}, \\
&= \{x \mid (x \in A) \lor (x \in B) \lor (x \in C) \}, \\
&= \{x \mid ((x \in A) \lor (x \in B)) \lor x \in C) \}, \\
&= (A \cup B) \cup C.
\end{align*}
\end{myproof}
\begin{checklist}
\item The statement of the proposition doesn't introduce notation, so the proof must do so.
\item Alternatively, we can show that \( A \cup (B \cup C) \subset (A \cup B) \cup C) \) and \( (A \cup B) \cup C) \subset A \cup (B \cup C)\).
\end{checklist}
\end{frame}
\begin{frame}{Alternative proofs}
\begin{myproof} Let \(A,B\), and \(C\) be sets. We'll show that \(A \cup (B \cup C) = (A \cup B) \cup C\).
We have
\begin{align*}
x \in A \cup (B \cup C) &\implies (x \in A) \lor (x \in B \cup C), \\
&\implies (x \in A) \lor ( (x \in B) \lor (x \in C)), \\
& \implies ( (x \in A) \lor (x \in B) ) \lor (x \in C), \\
& \implies x \in ( A \cup B) \cup C.
\end{align*}
Similarly, we can show that \( x \in (A \cup B) \cup C \implies x \in A \cup (B \cup C)\).
\end{myproof}
\end{frame}
\begin{frame}{The uniqueness of emptiness}
\begin{myth} There is at most one empty set. \end{myth}
\begin{myproof} Let \(O\) and \(O^\prime\) be empty sets. Since \(O\) is empty, we have \(O \subset O^\prime\). Similarly since \(O^\prime \) is empty, we have \(O^\prime \subset O\). We have shown that \(O \subset O^\prime\) and \(O^\prime \subset O\); therefore \(O = O^\prime\). \end{myproof}
\begin{enumerate}
\item With impunity, we can now refer to \textbf{the} empty set.
\item A clumsy way to proof this is by contradiction. The proof assumes that there are empty sets \(O\) and \(O^\prime\), but \(O \neq O^\prime\).
\end{enumerate}
\end{frame}
\begin{frame}{Conflation}
\textbf{Question:} True or false: \(\varnothing = \{\varnothing \}\).
\vspace{0.2in}
\textbf{Answer:} It's false. We have \(\varnothing \in \{\varnothing \} \),
but \(\varnothing \not \in \varnothing\), so \(\varnothing \neq \{\varnothing \} \).
\end{frame}
\begin{frame}{A unique template}
If a proposition has the form
\begin{myth} If \(H_1, H_2, \dots\), and \( H_n\), there is at most one object \(X\). \end{myth}
A template for its proof is
\begin{myproof} Let \(X\) and \(X^\prime\) be such objects. Since \(H_1, H_2, \dots\), and \( H_n\), we have \dots. ; therefore \(X = X^\prime\). \end{myproof}
\begin{enumerate}
\item When \(X\) and \(X^\prime \) are real numbers, we might prove \(X = X^\prime\) by showing that both \(X \leq X^\prime\) and \(X^\prime \leq X\) are true. Together,
these inequalities prove that \(X = X^\prime\).
\end{enumerate}
\end{frame}
\begin{comment}
\begin{frame}{Generalized disjunctions}
Let \(I\) be a set. And suppose that every member of \(I\) is a statement. Define
\[
\underset{x \in I}{\lor} x \equiv (\exists x \in I)(x).
\]
In this context, the set \(I\) is called an \emph{index set}. When \(I\) is a finite set, say \(I = \{P_1, P_2, \dots P_n\}\), we have
\[
\underset{x \in I}{\lor} x \equiv P_1 \lor P_2 \lor \cdots \lor P_n.
\]
The disjunction is associative and commutative, so we don't need to parenthesize \( P_1 \lor P_2 \lor \cdots \lor P_n \).
\begin{myth} Let \(I\) and \(I^\prime\) be sets, and suppose that every member of \(I\) is a statement and every member of \(I^\prime \) is a statement.
Then
\[
\underset{x \in I \cup I^\prime}{\lor} x \equiv \left ( \underset{x \in I}{\lor} x \right) \lor \left ( \underset{x \in I^\prime}{\lor} x \right).
\]
\end{myth}
\end{frame}
\begin{frame}{Vacuous unions}
We have
\[
\underset{x \in \varnothing}{\lor} x \equiv (\exists x \in \varnothing)(x) \equiv \mbox{false}.
\]
Thus we have
\begin{align*}
\underset{x \in I }{\lor} x \in I &\equiv \underset{x \in I \cup \varnothing}{\lor} x \in I, \\
&\equiv \left( \underset{x \in I }{\lor} x \in I \right) \lor \left( \underset{x \in \varnothing }{\lor} x \in I \right), \\
&\equiv \left( \underset{x \in I }{\lor} x \in I \right) \lor \mbox{ false }, \\
&\equiv \underset{x \in I }{\lor} x \in I.
\end{align*}
Comparing the first and the last, we have the tautology
\[
\underset{x \in I }{\lor} x \in I \equiv \underset{x \in I }{\lor} x \in I .
\]
\end{frame}
\end{comment}
\begin{frame}{Generalized unions}
Let \(I\) be a set. And suppose that every member of \(I\) is a set. Since every member of \(I\) is a set, we can find the union of all of its members. We define
\[
\underset{x \in I}{\cup} x = \{ a \, \, | \, \, (\exists x \in I)(a \in x) \}.
\]
In this context, we say that the set \(I\) is an \emph{index set.}
\begin{myex} Define \(I = \{ \{1,2\}, \{107\} \} \). Then \(I\) is a set and each member of \(I\) is a set. We have
\begin{align*}
\underset{x \in I}{\cup} x &= \{ a \, \, | \, \, (\exists x \in I)(a \in x) \}, \\
&= \{ a \, \, | \, \, a \in \{1,2\} \lor a \in \{107\} \}, \\
&= \{1,2\} \cup \{107\}, \\
&= \{1,2,107\}.
\end{align*}
\end{myex}
\end{frame}
\begin{frame}{Finite unions}
\begin{myth} Let \(A_1, A_2, \dots, A_n\) be sets. Define an index set \(I\) by \(I = \{A_1, A_2, \dots, A_n \} \). Then
\[
\underset{x \in I}{\cup} x = A_1 \cup A_2 \cup \cdots \cup A_n.
\]
\end{myth}
\begin{enumerate}
\item The set union is associative and commutative, so the meaning of \(A_1 \cup A_2 \cup \cdots \cup A_n \) unambiguous.
\item An index set neededn't be finite.
\end{enumerate}
\end{frame}
\begin{frame}{Nonfinite unions}
\begin{myex} The index set needn't be finite--here is an example. For \(x \in \reals\), define \( I = \{ (-\infty, x) \,\, | \,\, x \in \reals \} \). Our index set is a set of open intervals.
We claim that
\[
\underset{x \in I}{\cup} x = \reals.
\]
\end{myex}
\begin{myproof} Suppose \(a \in \underset{x \in I}{\cup} x \). We'll show that \(a \in \reals\). Since \(a \in \underset{x \in I}{\cup} x \), there is \(z \in I\) such that \(a \in z\). But \(z \subset \reals\), so \(a \in \reals\); we've shown that \( \underset{x \in I}{\cup} x \subset \reals\).
\quad Suppose \(a \in \reals\). We'll show that \(a \in \underset{x \in I}{\cup} x \). We have \(a \in (-\infty, a + 1)\). Further \( (-\infty, a + 1) \in I\); therefore \(a \in \underset{x \in I}{\cup} x \).
\end{myproof}
\begin{enumerate}
\item Notice that \( a \not \in (-\infty, a)\). But it is true that \(a \in (-\infty, a + 1)\).
\item It's also true that \(a \in (-\infty, a + 107 \, \uppi^2)\).
\end{enumerate}
\end{frame}
\begin{frame}{Generalized intersections}
Let \(I\) be a set. And suppose that every member of \(I\) is a set. Since every member of \(I\) is a set, we can find the intersection of all of its members. We define
\[
\underset{x \in I}{\cap} x = \{ a \, \, | \, \, (\forall x \in I)(a \in x) \}.
\]
\begin{myex} Define \(I = \{ \{1,2\}, \{107\} \} \). Then \(I\) is a set and each member of \(I\) is a set. We have
\begin{align*}
\underset{x \in I}{\cap} x &= \{ a \, \, | \, \, (\forall x \in I)(a \in x) \}, \\
&= \{ a \, \, | \, \, a \in \{1,2\} \land a \in \{107\} \}, \\
&= \{1,2\} \cap \{107\}, \\
&= \varnothing.
\end{align*}
\end{myex}
\end{frame}
\begin{frame}{Finite intersections}
\begin{myth} Let \(A_1, A_2, \dots, A_n\) be sets. Define an index set \(I\) by \(I = \{A_1, A_2, \dots, A_n \} \). Then
\[
\underset{x \in I}{\cap} x = A_1 \cap A_2 \cap \cdots \cap A_n.
\]
\end{myth}
\begin{enumerate}
\item The set intersection is associative and commutative, so the meaning of \(A_1 \cap A_2 \cap \cdots \cap A_n \) unambiguous.
\item An index set needn't be finite.
\end{enumerate}
\end{frame}
\begin{frame}{Nonfinite intersections}
\begin{myex} For \(x \in \reals\), define \( I = \{ (-\infty, x) \,\, | \,\, x \in \reals \} \). Our index set is a set of open intervals.
We claim that
\[
\underset{x \in I}{\cap} x = \varnothing.
\]
\end{myex}
\begin{myproof} We'll prove this using contradiction. Suppose \( \underset{x \in I}{\cap} x \) has at least one member; say \(a \in \underset{x \in I}{\cap} x \). We have
\[
(\forall x \in \reals)(a \in (-\infty, x)).
\]
In particular, we have \(a \in (-\infty, a)\). But \(a \in (-\infty, a)\) is false; therefore \( \underset{x \in I}{\cap} x \) cannot have a member, so \( \underset{x \in I}{\cap} x \) is the empty set.
\end{myproof}
\end{frame}
\begin{frame}{Alternative notation}
Sometimes we take the index set to be a subset of \(\reals\) and we denote the sets members by subscripts. Say \(I \subset \reals\) and \(A_x\) is a set for each \(x \in I\). This notation is particlarly
popular when \(I = \integers_{> 0}\). For example
\[
\underset{k \in \integers_{> 0}} {\cap} A_k = \{ a \,\, | \,\, (\forall n \in \integers_{> 0})(a \in A_n) \}
\]
And
\[
\underset{k \in \integers_{> 0}} {\cup} A_k = \{ a \,\, | \,\, (\exists n \in \integers_{> 0})(a \in A_n) \}
\]
When the index set is uncountable, maybe it's just me, but definitions such as
\[
A_x = (-\infty, x) \mbox{ for all } x \in \reals
\]
are semi-bazaar looking. For such cases, I think it's more clear to define the index set to be a set of sets:
\[
I = \{ (-\infty, x) \,\, | \,\, x \in \reals\}.
\]
\end{frame}
\begin{comment}
\begin{frame}{Vacuous Truth} Let \(T\) be a boolean valued function. Consider the statement
\[
(\exists x \in \varnothing)(T(x)).
\]
To show that it's true, you would have to find a member of the empty set that makes \(T\) true. There are no members of the empty set, so for any predicate \(T\), we have
\[
(\exists x \in \varnothing)(T(x)) \equiv \mbox{false}.
\]
Thus it's negation is true; that is
\[
(\exists x \in \varnothing)(\lnot T(x)) \equiv \mbox{true}.
\]
\begin{myfact} For any boolean valued function \(T\), we have
\begin{align*}
(\exists x \in \varnothing)(T(x)) \equiv \mbox{false}, \\
(\forall x \in \varnothing)(T(x)) \equiv \mbox{true}.
\end{align*}
\end{myfact}
\end{frame}
\end{comment}
\begin{frame}{Functions}
To define a function \(F\) with domain \(A\) and formula \(\mbox{blob}\), we can write
\[
F = x \in A \mapsto \mbox{blob}.
\]
In the rare cases that it's important to give the function a codomain, we can write
\[
F = x \in A \mapsto \mbox{blob} \in B,
\]
where \(\codomain(F) = B\). Generically for a function \(F\) with domain \(A\) and codomain \(B\), we say that \(F\) is a function from \(A\) to \(B\).
\begin{example} The notation
\[
F = x \in [-1,1] \mapsto 2 x + 1
\]
is our compact way of writing: Define \(F(x) = 2x + 1 \), for \( -1 \leq x \leq 1\).
\end{example}
\end{frame}
\begin{frame}{Function signature}
The notation \(F : A \to B\) means
\begin{enumerate}
\item \(F\) is a function.
\item \(\dom(F) = A \).
\item \(\codomain(F) = B\).
\end{enumerate}
\vspace{0.1in}
We'll say that \(A \to B\) is the \emph{signature} of a function. The signature of a function doesn't tell us its formula. It does tell us the domain of a function and it indicates what the outputs of the function can be.
\end{frame}
\begin{frame}{Range}
\begin{definition} For any function, we define
\[
\range(F) = \left \{F(x) | x \in \domain(F) \right \}.
\]
Thus \(\range(F)\) is the set of all outputs.
\end{definition}
\begin{myfact} Let \(F\) be a function. Then
\[
\left[ y \in \range(F) \right] \equiv \left(\exists x \in \domain(F) \right)(y = F(x)).
\]
\end{myfact}
\begin{example} Define \(F = x \in [-1,1] \mapsto 2 x + 1\). Then \(\frac{3}{2} \in \range(F)\) because \(\frac{1}{4} \in \domain(F)\) and \(F(\frac{1}{4}) = \frac{3}{2}\).
\end{example}
\end{frame}
\begin{frame}{Ontoness}
The codomain of a function tells us something about its outputs, but remember that the range and the codomain of a function need not be the same. For all functions \(F\), we have
\[
\range{F} \subset \codomain(F).
\]
\begin{mydef} A function is \emph{onto} if its range and codomain are equal. \end{mydef}
\begin{myex} \textbf{Question}: Is the sine function onto? \textbf{Answer} It is if its codomain is \([-1,1]\). But if its codomain is \(\reals\), then no it's not onto. There is no standard value for the codomain of the trigonometric functions, so the asking ``Is the sine function onto?'' is rubbish.\end{myex}
\end{frame}
\begin{frame}{Equality}
\begin{mydef} Functions \(F\) and \(G\) are \emph{equal } \(\dom(F) = \dom(G)\) and for all \(x \in \dom(F) \), we have \(F(x) = G(x)\). Equivalently
\[
(F = G) \equiv (\dom(F) = \dom(G)) \land (\forall x \in \dom(F))(F(x) = G(x)).
\]
\end{mydef}
\begin{enumerate}
\item The definition of function equality does not involve the codomain of the function. Thus two functions can be equal, but have unequal codomains.
\end{enumerate}
\begin{myex} The functions \(F = x \in [-1,1] \mapsto x \in [-1,1]\) and \(G = x \in [-1,1] \mapsto x \in \reals \) are equal, but \(F\) is onto and \(G\) is not onto. Thus
ontoness isn't a property of a function. \end{myex}
\end{frame}
\begin{frame}{Apply a function to a set}
\begin{mydef} Let \(F : A \to B\). For any subset \(A^\prime\) of \(A\) define
\[
F(A^\prime) = \{ F(x) | x \in A^\prime \}.
\]
Equivalently, we have
\[
y \in F(A^\prime) \equiv (\exists x \in A^\prime)(y = F(x)).
\]
\end{mydef}
\begin{myth} For all functions \(F\), we have \(F(\dom{F}) = \range(F) \). Further \(F(\varnothing) = \varnothing \). \end{myth}
\end{frame}
\begin{frame}{Inverse image}
\begin{mydef} Let \(F : A \to B\). For any subset \(B^\prime\) of \(B\) define
\[
F^{-1} (B^\prime) = \{ x \in A | F(x) \in B \}.
\]
Equivalently, we have
\[
x \in F^{-1} (B^\prime) \equiv F(x) \in B.
\]
\end{mydef}
\end{frame}
\end{document}