-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath-460-review-exam-1.tex
279 lines (220 loc) · 8.91 KB
/
math-460-review-exam-1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
\documentclass[12pt,fleqn,answers]{exam}
\usepackage{pifont}
\usepackage{dingbat}
\usepackage{amsmath,amssymb,amsthm}
\usepackage{epsfig}
\usepackage[]{hyperref}
\usepackage{geometry}
\geometry{letterpaper, margin=0.5in}
\addpoints
\boxedpoints
\pointsinmargin
\pointname{pts}
\newtheorem{prop}{Proposition}
\usepackage{enumerate}
\newenvironment{alphalist}{
%\vspace{-0.4in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{0.0\itemsep}}
{\end{enumerate}}
\frenchspacing
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,factor=1100,stretch=10,shrink=10]{microtype}
\usepackage[american]{babel}
%\usepackage[T1]{fontenc}
\usepackage{fourier}
\usepackage{isomath}
\usepackage{upgreek,amsmath}
\usepackage{amssymb}
\newcommand{\dotprod}{\, {\scriptzcriptztyle
\stackrel{\bullet}{{}}}\,}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\lub}{\mathrm{lub}}
\newcommand{\glb}{\mathrm{glb}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\dom}{\mbox{dom}}
\newcommand{\cover}{{\mathcal C}}
\newcommand{\integers}{\mathbf{Z}}
\newcommand{\vi}{\, \mathbf{i}}
\newcommand{\vj}{\, \mathbf{j}}
\newcommand{\vk}{\, \mathbf{k}}
\newcommand{\bi}{\, \mathbf{i}}
\newcommand{\bj}{\, \mathbf{j}}
\newcommand{\bk}{\, \mathbf{k}}
\DeclareMathOperator{\Arg}{\mathrm{Arg}}
\DeclareMathOperator{\Ln}{\mathrm{Ln}}
\newcommand{\imag}{\, \mathrm{i}}
\newcommand{\true}{\mbox{true}}
\usepackage{graphicx}
\newcommand\AM{{\sc am}}
\newcommand\PM{{\sc pm}}
\usepackage{color}
\shadedsolutions
\definecolor{SolutionColor}{rgb}{0.8,0.9,1}
\newcommand{\quiz}{Review for Exam I}
\newcommand{\term}{Fall}
\newcommand{\due}{Saturday 10 September at 11:59 \PM}
\begin{document}
\large
\noindent{\textbf \quiz}
%\vspace{0.1in}
%\noindent\makebox[3.0truein][l]{{\bf MATH 460}}
%{\bf Name:} \\
%\noindent \makebox[3.0truein][l]{\bf Homework \quiz, \term \/ \the\year}
%{\bf Row:}\hrulefill\
%\vspace{0.1in}
\begin{questions}
\question Let $A$ and $B$ be subsets of $\reals$. Show that if $A$ and $B$ are bounded above,
then $A \cup B$ is bounded above. You may use the fact that for real numbers $a$ and $b$, we have
$a \leq \max(a,b)$ and $b \leq \max(a,b)$.
\begin{solution}
\begin{proof} Let $A$ and $B$ be subsets of $\reals$ that are bounded above. We'll show that $A \cup B$
is bounded above. Since $A$ and $B$ are bounded above, there are $p,q \in \reals$ such that
for all $a \in A$, we have $a \leq p$ and for all $b \in A$, we have $b \leq q$. Define $M = \max(p,q)$.
We'll show that $M$ is an upper bound for $A \cup B$. Let $x \in A \cup B$. Either $x \in A$ or $x \in B$.
If $x \in A$, we have $x \leq p \leq M$. Similarly, if If $x \in B$, we have $x \leq q \leq M$. \qedhere
\end{proof}
\end{solution}
\question Give an example of a subset of $\reals$ that does not have a least upper bound.
\begin{solution} The set $\reals$ is a subset of $\reals$ that does not have a least upper bound.
\end{solution}
\question Give an example of a subset $A$ of $\reals$ such that $\lub(A) \in A$.
\begin{solution} We have $\lub((0,1]) = 1$ and $1 \in (0,1])$.
\end{solution}
\question Give an example of a subset $A$ of $\reals$ such that $\lub(A) \notin A$.
\begin{solution} We have $\lub((0,1)) = 1$ and $1 \notin (0,1])$.
\end{solution}
\question Show that $\lub((-\infty, 2)) = 2$.
\begin{solution} We'll show that 2 is an upper bound for $(-\infty, 2)$ and that for all $r \in \reals_{>0}$,
there is $a \in (-\infty, 2)$ such that $2 - r < a$.
The fact that 2 is an upper bound for $(-\infty, 2)$ is apparent. Let $r \in \reals_{>0}$. Choose
$a = 2 - r/2$. Then $a \in (-\infty, 2)$ as required. Further since $r >0$, we have $2 - r < 2 - r/2$.
\end{solution}
\question Show that $\lub([0, 2)) = 2$.
\begin{solution} We'll show that 2 is an upper bound for $([0, 2)$ and that for all $r \in \reals_{>0}$,
there is $a \in ([0, 2)$ such that $2 - r < a$.
The fact that 2 is an upper bound for $[0, 2)$ is apparent. Let $r \in \reals_{>0}$. Choose
$a = \max(1, 2- r/2)$. Then $a \in [0, 2)$ as required. For $r < 2$, we have $a = 2 - r/2$.
Since $r > 0$, we have $a < 2$, For $r \geq 2$, we have $a=1$. We have $1 < 2$ as required.
\end{solution}
\question Let $A$ be a subset of $\reals$. Show that $A$ has at most one least upper bound.
\begin{solution} See class notes.
\end{solution}
\question Write a proof for
\begin{prop}
For all $x,y \in \reals$, there is $a \in \reals$ such that
$x < y$ implies $x<a<y$. \label{p1}
\end{prop}
\begin{solution} See class notes.
\end{solution}
\question Write a proof for
\begin{prop} For all $x \in \reals_{>0}$ there is
$y \in \reals_{> 0}$ such that $y < x$. \label{p5}
\end{prop}
\begin{solution} See class notes.
\end{solution}
\question Without explicitly using negation, write the negation of
\begin{prop} There are $x,y \in \reals$ such that $\sin(x) = \sin(y) \implies x = y$.
\end{prop}
\question Either write a proof of
\begin{prop} There are $x,y \in \reals$ such that $\sin(x) = \sin(y) \implies x = y$.
\end{prop}
or write a proof of its negation.
\question Let $(\mathcal{F},+, \times)$ be a field and let $O$ be the additive identity and $I$ be the multiplicative
identity. Given that $O = I$, show that $\mathcal{F} = \{O\}$.
\begin{solution} See class notes.
\end{solution}
\question Let $(\mathcal{F},+, \times)$ be a field. Show that for all $a,b \in \mathcal{F}$, we have $a \times b = a \times (-b)$.
\begin{solution} See class notes.
\end{solution}
\question Let $(\mathcal{F},+, \times)$ be an ordered field. For all $a,b,c \in \mathcal{F}$, show that $a < b$ and $c < 0$
implies $a \times c > b \times c$.
\begin{solution} See class notes.
\end{solution}
\question Show that
\[
\left(\forall k \in \integers_{>1} \right)
\left(\frac{1}{k^2} \leq \frac{1}{k-1} - \frac{1}{k} \right).
\]
\begin{solution}
We'll write our solution as a sequence of logical equivalences. Let $k \in
\integers_{>1}$. We have
\begin{align*}
\left[\frac{1}{k^2} \leq \frac{1}{k-1} - \frac{1}{k} \right] &\equiv
\left[\frac{1}{k^2} - \frac{1}{k-1} + \frac{1}{k} \leq 0 \right], &\mbox{(algebra)} \\
&\equiv \left[ -\frac{1}{(k-1) k^2} \leq 0 \right], &\mbox{(factor)} \\
&\equiv \true. &\mbox{($k - 1 > 0$ and $k^2 > 0$)}
\end{align*}
\end{solution}
\question Show that
\[
\left(\forall x \in (-\infty, 1) \right)\left( \exists r \in \reals_{>0} \right)
\left((x-r,x+r) \subset (-\infty, 1) \right).
\]
\begin{solution}
We need to choose a number $r$ such that $x+r < 1$ and $0 < r$.
Thus $0 < r < 1-x$. One choice is $r = \frac{1-x}{2}$. Since $x < 1$,
this choice does satisfy the condition $r > 0$.
\textbf{Proof} Let $x \in (-\infty, 1) $. Choose $r = \frac{1-x}{2}$. Since $x < 1$,
it follows that $r \in \reals_{>0}$ as required. Since $ r > 0$, the condition
\( (x-r,x+r) \subset (-\infty, 1)\) is equivalent to $x + r < 1$.
We have
\[
\left[x + r < 1 \right] \equiv \left[x + \frac{1-x}{2} < 1 \right]
\equiv \left[\frac{1+x}{2} < 1 \right] \equiv \left[1+x < 2 \right]
\equiv \left[ x < 1 \right] \equiv \true.
\]
\end{solution}
\question Let $A,B$ be subsets of $\reals$ and let $A$ be bounded above.
Show that $A \setminus B$ is bounded above.
\begin{solution}
Since $A$ is bounded above, there is $M \in \reals$ such that
$(\forall x \in A)(x \leq M)$. We will show that
\[
(\exists M^\prime \in \reals)(\forall x \in A \setminus B)(x \leq M^\prime).
\]
Choose $M^\prime= M$. Let $x \in A \setminus B$. Then $x \in A$; thus we have
\[
[x \leq M^\prime] \equiv [x \leq M] \equiv \true.
\]
\end{solution}
\question Give an example of subsets $A,B$ of $\reals$
such that $A \setminus B$ is bounded above, but $A$ is not bounded
above.
\begin{solution}
One (of many) example is $A = \reals$ and $B = \reals$. Then
$A$ is not bounded above, but $A \setminus B = \varnothing$,
so $A \setminus B$ is bounded above (because the empty set is bounded above).
\end{solution}
\question Define $F = x \in \reals \mapsto x^2$. Enumerate the members of the set
\begin{equation*}
F(\{-4,-1,0,1,4 \}).
\end{equation*}
\begin{solution}
\[
F(\{-4,-1,0,1,4 \}) = \{F(-4),F(-1),F(0),F(1),F(4) \} =
\{0,1,16\}.
\]
\end{solution}
\question Show that
\[
\left(\forall a \in \reals \right) \left(\exists m \in \reals \right)
\left(\forall x \in \reals \right) \left(x^2 - a^2 \geq m (x-a) \right).
\]
\begin{solution}
We will write our proof as a sequence of logical
equivalences. Let $a \in \reals$. Choose $m = 2 a$. Let $x \in \reals$. We have
\begin{align*}
\left [x^2 - a^2 \geq m (x-a) \right ] &=
\left [x^2 - a^2 \geq 2a (x-a) \right ], &\mbox{(substitution for $m$)} \\
&=
\left [x^2 -2 a (x-a) - a^2 \geq 0 \right ], &\mbox{(algebra)}\\
&=
\left [x^2 -2 a + a^2 \geq 0 \right ], &\mbox{(algebra)} \\
&=
\left [(x - a)^2 \geq 0 \right ], &\mbox{(factor)} \\
&=
\true.
\end{align*}
\end{solution}
\end{questions}
\end{document}