-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath-460-let-choose.tex
283 lines (198 loc) · 8.3 KB
/
math-460-let-choose.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{-8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Dr.\ Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
%\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Proposition}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}
\newtheorem{hurestic}{Hurestic}
%\usepackage{array} % for \newcolumntype macro
%\newcolumntype{L}{>{$}l<{$}} % math-mode version of "l" column type
\newenvironment{alphalist}{
\vspace{-0.4in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\newenvironment{snowflakelist}{
\vspace{-0.4in}
\begin{enumerate}[\textleaf]
\addtolength{\itemsep}{-1.2\itemsep}}
{\end{enumerate}}
\newenvironment{checklist}{
\begin{enumerate}[\ding{52}]
\addtolength{\itemsep}{-1.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
\usepackage{array}
\newcolumntype{C}{>$c<$}
\newcommand{\llnot}{\lnot \,} % is accepted
\DeclareMathOperator{\3F2}{{}_3 F_2}
\newcommand\pochhammer[2]{\left[\genfrac..{0pt}{}{#1}{#2}\right]}
\newmuskip\pFqmuskip
\newcommand*\pFq[6][8]{%
\begingroup % only local assignments
\pFqmuskip=#1mu\relax
% make the comma math active
% \mathcode`\,=\string"8000
% and define it to be \pFqcomma
\begingroup\lccode`\~=`\,
\lowercase{\endgroup\let~}\pFqcomma
% typeset the formula
{}_{#2}\!\F_{#3}{\left[\genfrac..{0pt}{}{#4}{#5};#6\right]} %\F{\left[\genfrac..{0pt}{}{#4}{#5};#6\right]} %alt: {}_{#2}\F_{#3}{\left[\genfrac..{0pt}{}{#4}{#5};#6\right]}
\endgroup
}
\newcommand{\pFqcomma}{\mskip \pFqmuskip}
\newcommand{\mydash}{\text{--}}
%------------------
%\subtitle{Lesson $\alpha$}
\title{\textbf{Let / Choose Proofs}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
%{
% \inst{1}%
% ``The secret of getting ahead is getting started.'' Mark Twain
% }
\date{}
\usepackage{courier}
%\lstset{basicstyle=\ttfamily\footnotesize,breaklines=true}
%\lstset{framextopmargin=50pt,frame=bottomline}
%\begin{document}
%--------
%usepackage[usenames,dvipsnames,svgnames,table]{color}
\begin{document}
\frame{\titlepage}
\begin{frame}{The Let/Choose Template}
Many propositions have the form
\vspace{0.1in}
\quad \quad (string of \(\forall\) \(\exists\) qualifiers in involving \(x_1\) thru \(x_n\)) (\(P (x_1, \dots x_n)\)),
\vspace{0.1in}
where \(P\) is a predicate. It behooves us to have a template for proving such propositions. Let's try the example
\begin{myth} For every \(x \in \reals\) there is \(y \in \reals\) such that \(x < y\). \end{myth}
\begin{enumerate}
\item[\# 0] Write the proposition in symbolic form:
\[
(\forall x \in \reals)(\exists y \in \reals)(x < y).
\]
\item[\#1] Write the proposition in the form of a question:
\quad \emph{Given a real number \(x\), can I find a number \(y\) such that \(x < y\)?}
\item[\#2] Answer your question.
\quad \emph{Sure--a number that is greater than \(x\) is \(x +1\).}
\end{enumerate}
\end{frame}
\begin{frame}
\begin{enumerate}
\item[\#3] Using the symbolic form of the proposition and \emph{strictly moving from left to right}, replace \(\forall \) with ``Let,'' and \(\exists\) with ``Choose.'' After each ``choose'' make a box to fill in.
Finish with the predicate:
Let \(x \in \reals\). Choose \(y = \fbox{\phantom{XX}}\). We have
\[
[x < y] =
\]
\item[\#4] Fill in the boxes with the answers you chose, and attempt to show that the predicate is true:
Let \(x \in \reals\). Choose \(y = \fbox{x+1}\). We have
\begin{align*}
[x < y] &\equiv [x < x + 1] , &(\mbox{substitute for } y)\\
&\equiv [0 < 1], &(\mbox{subtract } x \mbox{ from both sides})\\
&\equiv \mbox{true}.
\end{align*}
\item[\#5] Erase the boxes:
\begin{myproof}
Let \(x \in \reals\). Choose \(y = x+1\). We have
\begin{align*}
[x < y] &\equiv [x < x + 1] , &(\mbox{substitute for } y)\\
&\equiv [0 < 1], &(\mbox{subtract } x \mbox{ from both sides})\\
&\equiv \mbox{true}.
\end{align*}
\end{myproof}
\item[\#6] Proofread your work.
\end{enumerate}
\end{frame}
\begin{frame}{\(\lnot\) Pedantic }
\begin{enumerate}
\item Proof construction is a creative activity--there is no step of steps that will always generate a proof.
\item But having patterns to follow and knowing techniques is useful for all creative endeavors.
\end{enumerate}
\end{frame}
\begin{frame}{Respecting order}
The order of qualifiers matters. To show this, let's reverse the order of qualifiers in the previous proposition:
\begin{myth} There is \(y \in \reals\) such that for every \(x \in \reals\) we have \(x < y\). \end{myth}
\vspace{0.2in}
\textbf{Question} Can I find a real number \(y\) such that for every real number \(x\), we have \(x < y \)?
\vspace{0.2in}
\textbf{Answer:} No I don't think so--the number we choose has to be larger than \(10^{10}\), larger than
\(10^{{10}^{10}} \) and larger than every number. The statement requires that $y$ be a
\emph{real number}, so choosing $y = \infty$ isn't an option.
\vspace{0.2in}
\textbf{Tip} Proving things that are wrong take too much time. So try to avoid attempting.
\end{frame}
\begin{frame}
Let's show that the proposition is false by showing that its negation is true; the negation of the proposition is
\begin{myth} For all \(y \in \reals\) there is \(x \in \reals\) such that \(x \geq y\). \end{myth}
\begin{myproof} Let \(y \in \reals\). Choose \(x = y\). Then \([ x \geq y] \equiv [y \geq y] \equiv \mbox{true} \).
\end{myproof}
\begin{enumerate}
\item We could choose \(x = y+1\), but we only need \(x \geq y\), so we can choose \(x = y\).
\end{enumerate}
\end{frame}
\begin{frame}{Later, rinse, repeat}
\begin{myth} For all \(x \in \reals_{> 0}\) there is \(y \in \reals_{>0} \) such that \(y < x\). \end{myth}
\begin{enumerate}
\item Write the proposition in the form of a question:
\quad \emph{Given a positive real number \(x\), can I find a positive \(y\) such that \(y\) is smaller than \(x\)?}
\item Answer your question.
\quad \emph{Sure--a positive number that is smaller than \(x\) is the average of zero and \(x\); that is \(x/2\).}
\item I'm ready, I think:
\begin{myproof} Let \(x \in \reals_{> 0}\). Choose \(y = x/2\). Then \(y \in \reals_{> 0}\). Further
\begin{align*}
[y < x] &\equiv [x/2 < x] &(\mbox{substitute for } y)\\
&\equiv [1/2 < 1] &(\mbox{divide inequality by positive number } x)\\
&\equiv \mbox{true}.
\end{align*}
\end{myproof}
\end{enumerate}
\end{frame}
\end{document}