-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath-460-fake-proofs.tex
313 lines (219 loc) · 10.5 KB
/
math-460-fake-proofs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
%\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Theorem}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}
\newtheorem{myfakeproof}{Fake Proof}
\newtheorem{mybadformproof}{Bad Form Proof}
\newtheorem{hurestic}{Hurestic}
\newenvironment{alphalist}{
\vspace{-0.4in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\newenvironment{snowflakelist}{
\vspace{-0.4in}
\begin{enumerate}[\textleaf]
\addtolength{\itemsep}{-1.2\itemsep}}
{\end{enumerate}}
\newenvironment{checklist}{
\begin{enumerate}[\ding{52}]
\addtolength{\itemsep}{-1.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
\usepackage{array}
\newcolumntype{C}{>$c<$}
\newcommand{\llnot}{\lnot \,} % is accepted
\newcommand{\mydash}{\text{--}}
%------------------
\title{\textbf{Fake Proofs}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
\subtitle{%Lesson 10 \\ \vspace{0.5in}
``If you can't prove what you want to prove, demonstrate something else and pretend that they are the same.'' \\ \vspace{0.15in}{Darrell Huff} \\ \vspace{0.15in} \emph{How to Lie with Statistics} \\
\vspace{1.0in}
\tiny Barton Willis, Attribution 4.0 International (CC BY 4.0), 2020, 2023 \normalsize
}
\date{}
\begin{document}
\frame{\titlepage}
\begin{frame}{Prove a special case}
\begin{myth} Every function that is differentiable at zero is continuous at zero. \end{myth}
\begin{myfakeproof} Let \(F = x \in \reals \mapsto x^2\). This function is
differentiable at zero. And it's continuous at zero. We've shown that a
function that is differentiable at zero is continuous at zero.
\end{myfakeproof}
\begin{enumerate}
\item We can't prove an ``every'' statement by checking just one out of many cases.
\item Occasionally, students \textbf{mistakenly} believe that if the instructions are
to \emph{show} instead of \emph{prove} that something is true, it's OK to verify the
statement is true for one particular case. But no, \emph{showing} that something is
true and \emph{proving} that is true are identical instructions.
\end{enumerate}
\end{frame}
\begin{frame}{Assume the conclusion}
\begin{myth} Let \(A,B\), and \(C\) be sets. If \(A \subset B\) and \(B \subset C\), we have \(A \subset C\). \end{myth}
\begin{myfakeproof} Suppose \(A \subset C\). [Rubbish Deleted]; therefore \(A \subset C\). \end{myfakeproof}
\begin{enumerate}
\item Terrific--we just proved the tautology \( (A \subset C) \implies (A \subset C) \).
\item A proof needs to flow from the hypothesis (in this case \(A \subset B\) and \(B \subset C\)) to the conclusion (\(A \subset C\)).
\end{enumerate}
\end{frame}
\begin{frame}{Assuming facts not in evidence}
\begin{myth} Every continuous function has an antiderivative. \end{myth}
\begin{myfakeproof} Define \(F(x) = a_0 + a_1 x + \cdots + a_n x^n \). An antiderivative of \(F\) is
\[
a_0 x + \frac{1}{2} a_1 x^2 + \cdots + \frac{1}{1+n} a_n x^{n+1}.
\]
Therefore, \(F\) has an antiderivative.
\end{myfakeproof}
\begin{enumerate}
\item Assuming that \(F\) is a polynomial is assuming facts not in evidence.
\item Arguably, this fake proof falls under the ``Prove a special case'' category.
\end{enumerate}
\end{frame}
\begin{frame}{Proof by obfuscation}
\begin{myth} For every \(a,b \in \reals \) with \(a \neq b\) there is \(x \in \reals\) such that \( \min(a,b) < x < \max(a,b) \). \end{myth}
\begin{mybadformproof}
We the People of the United States, in Order to form a more perfect Union, establish Justice, insure domestic Tranquility, provide for the common defense, promote the general Welfare, and secure the
Blessings of Liberty to ourselves and our Posterity, do ordain and establish this Constitution for the United States of America. Choose \(x = \frac{a+b}{2} \).
\quad Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal. We have
\( x = \frac{a+b}{2} < \frac{ \max(a,b) + \max(a,b) }{2} = \max(a,b)\).
\quad We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness. Similarly \(\min(a,b) < x\). Therefore \( \min(a,b) < x < \max(a,b) \).
\end{mybadformproof}
\end{frame}
\begin{frame}{The Twisties}
\begin{myth} We have
\[
\left (\exists m \in \reals_{> 0} \right) \left (\forall x \in \reals_{> 0} \right) \left(\left| \frac{x}{x+1} \right| \leq m |x| \right).
\]
\end{myth}
\begin{myfakeproof} Let \(x > 0\). Choose \(m = \frac{1}{1+x}\). Then \(m > 0\), as required. Further,
\[
\left [ \left | \frac{x}{x+1} \right | \leq m |x| \right] \equiv \left [\left| \frac{x}{x+1} \right| \leq \left| \frac{x}{x+1} \right| \right] \equiv \mbox{True}.
\]
\end{myfakeproof}
\begin{enumerate}
\item We proved that \( \left (\forall x \in \reals_{> 0} \right) \left (\exists m \in \reals_{> 0} \right) \left (\left| \frac{x}{x+1} \right| \leq m |x| \right) \).
\item In the actual proposition, the first introduced variable is \(m\) and the second is \(x\). Since \(m\) comes first, it \textbf{cannot depend} on \(x\).
\end{enumerate}
\end{frame}
\begin{frame}{Working backwards}
\begin{myth} We have \(3^{1/3} > 5^{1/5} \). \end{myth}
\begin{myfakeproof}
We have
\small
\[
3^{1/3} > 5^{1/5} \implies (3^{1/3})^{15} > (5^{1/5})^{15} \implies 3^5> 5^3 \implies 243 > 125 = \mathrm{true!}
\]
\end{myfakeproof}
\begin{enumerate}
\item Congratulations--we just proved that if \(3^{1/3} > 5^{1/5}\) then \( 243 > 125\).
\item This fake proof can be salvaged by starting with \( 243 > 125\) and reversing each implication.
\item But not all such ``backward'' proofs can be salvaged this way.
\item The suggestion to ``start with what you want and work backwards'' is sometimes OK, but it
is often terrible advice.
\end{enumerate}
\end{frame}
\begin{frame}{Backwards redux}
\begin{myproof}
We have
\begin{align*}
\left[ 3^{1/3} > 5^{1/5} \right] &\equiv \left[ (3^{1/3})^{15} > (5^{1/5})^{15} \right] & ( x \in \reals \mapsto x^{15} \mbox{ is increasing}) \\
&\equiv \left[ 3^5> 5^3 \right] &(\mbox{algebra}) \\
&\equiv \left[ 243 > 125 \right] &(\mbox{algebra}) \\
&\equiv \mbox{true}
\end{align*}
\end{myproof}
\begin{enumerate}
\item Isn't this proof also backwards? It starts with the conclusion!
\item Yes, the main part of the proof starts with the conclusion, but it shows that \( \left[ 3^{1/3} > 5^{1/5} \right] \equiv \mbox{true} \).
\item And that's fine.
\end{enumerate}
\end{frame}
\begin{frame}{Nonreversable backwardness}
Not all proofs that were constructed by ``working backwards''
can be salvaged; an example.
\begin{myth} We have $0 = 1$. \end{myth}
\begin{myfakeproof}
We have
\begin{align*}
\left[0 = 1\right] &\implies \left[0 \times 0 = 1 \times 0 \right], & \mbox{(multiply by zero)} \\
&\implies [0 = 0], &\mbox{(algebra)} \\
&\equiv \mbox{True}. &\mbox{(syntactic equality)}
\end{align*}
Thus $0 = 1$.
\end{myfakeproof}
\begin{enumerate}
\item Great! We've just proved that if $0 = 1$, then $0=0$.
\item Reversing the implication in $\left[0 = 1\right] \implies \left[0 \times 0 = 1 \times 0 \right]$
requires \emph{dividing} by zero. And that's rubbish.
\end{enumerate}
\end{frame}
\begin{frame}{Proof by Haiku }
\begin{myth} Let \(A,B\), and \(C\) be sets. Then \( \left (A \setminus B \right ) \subset A\) \end{myth}
\begin{mybadformproof}
\begin{center} \( A \setminus B \) \end{center}
\begin{center} \( A \setminus B \) takes $B$ away from \(A\) \end{center}
\begin{center} So \end{center}
\begin{center} \(\left(A \setminus B \right) \subset A\) \end{center}
\end{mybadformproof}
\begin{enumerate}
\item Proofs aren't poems, so don't format them as poetry.
\item Using a phrase such as ``takes away from'' is poetic license. Let's stick mathematical terminology.
\end{enumerate}
\end{frame}
\end{document}
https://www.quora.com/What-are-the-most-common-mistakes-people-make-when-writing-mathematical-proofs
"All other proofs contain numerous sentence fragments, formulas floating in outer
space, non sequiturs, and the depressingly ubiquitous unquantified variables.
Those are xs and vs and ϵs that make an appearance without the the crucial bits of
"For any real number x", "we can find some ϵ such that" or "we can now define v to
be the".