-
Notifications
You must be signed in to change notification settings - Fork 0
/
natural-domain.tex
279 lines (221 loc) · 8.24 KB
/
natural-domain.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
\documentclass[usenames,dvipsnames,fleqn,leqno,10pt, pdflatex]{beamer}
%\usetheme[professionalfonts]{Boadilla}
\usetheme{metropolis}
\setsansfont[BoldFont={Source Sans Pro Semibold}, Numbers={OldStyle}]{Source Sans Pro}
%\usepackage{fontspec}
\metroset{block=fill,background=light}
\setbeamertemplate{blocks}[rounded]
\usepackage{cite}
\usepackage{pgfplots}
%\usepackage[symbol]{footmisc}
%\setmainfont{Liberation Serif}
%\setbeamertemplate{bibliography item}[text]
%\usepackage{graphicx}
\usepackage{bbding}
\setbeamertemplate{caption}[numbered]
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{-8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
\author[bw]{}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{upgreek}
\usepackage{isomath}
\usepackage[normalem]{ulem}
%\usepackage{comment}
\usepackage[USenglish]{babel}
\usepackage[activate={true,nocompatibility},final,tracking=true,factor=1100,stretch=10,shrink=10]{microtype}
\usepackage[]{xcolor}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\newcommand{\imag}{\mathrm{i}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{domain}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\usepackage{graphicx}
\definecolor{UNK-blue}{HTML}{004d86}
\definecolor{UNK-gold}{HTML}{E4A115}
\newenvironment{PenList}{
\begin{enumerate}[\textcolor{UNK-blue}{\PencilRightDown}]
\addtolength{\itemsep}{-0.0\itemsep}}
{\end{enumerate}}
\setbeamertemplate{theorems}[unnumbered]
\newtheorem{myprop}{Proposition}
\newtheorem{idea}{Idea}
\newtheorem{describ}{Description}
\newtheorem{Homework}{Homework}
\newtheorem{myproof}{Proof}
\newtheorem{fakeproof}{Fake Proof}
\newtheorem{require}{Requirement}
\newtheorem{myexample}{Example}
%------------------
\title[] % (optional, only for long titles)
{\textcolor{black}{\textbf{Natural Domain}} \\
\vspace{0.2in}
%\textcolor{black}{Mini-symposium} \\
%\textcolor{UNK-blue}{\textbf{University of Nebraska at Kearney}}
}
%\usepackage{amsmath}
\date{\today}
\makeatletter
\newcommand{\leqnomode}{\tagsleft@true\let\veqno\@@leqno}
\newcommand{\reqnomode}{\tagsleft@false\let\veqno\@@eqno}
\makeatother
\author[] % (optional, for multiple authors)
{Barton~Willis}
%\institute[UNK] % (optional)
%{
% \inst{1}%
% Barton Willis \\
% Department of Mathematics and Statistics\\
% University Nebraska at Kearney \\
% Kearney, Nebraska 68849 USA \\
% \phantom{xxxx}\\
% \href{mailto:[email protected]}{[email protected]}}
%\usepackage{hyperref}
\pgfplotsset{compat=1.18}
\begin{document}
\frame{\titlepage}
\begin{frame}{Natural domain}
Often the formula for a function is given, but not its domain. For
such functions, the standard is that the domain is the largest
set of real numbers such that the output of the function is a real number.
\begin{describ}[Natural Domain] The \emph{natural domain} of a function is the
largest set on which the output of the function is a
real number. Examples of things that are \emph{not} real
numbers include:
\begin{itemize}
\item division by zero
\item square roots of negative numbers
\item logarithms of non-positive numbers
\end{itemize}
\end{describ}
\end{frame}
\begin{frame}
\textbf{Example} Find the natural domain of
\begin{equation*}
F(x) = \frac{1}{\frac{1}{x} + \frac{1}{x-2}}.
\end{equation*}
\begin{itemize}
\item We need to require that \emph{every} denominator is nonzero.
\item But that's tricky-there are three denominators; they are
$x$, $x-2$, and $\frac{1}{x} + \frac{1}{x-2}$.
\end{itemize}
\textbf{Solution} In set builder notation, the natural domain is the set
\begin{equation*}
\left\{ x \in \reals \bigg | \left(x \neq 0 \right)
\land \left(x-2 \neq 0 \right) \land
\left(\frac{1}{x} + \frac{1}{x-2} \neq 0 \right) \right\}
\end{equation*}
\begin{PenList}
\item Arguably, this is a lovely answer. But if you were asked to express the
set in interval notion, it's not such a lovely answer.
\item To make it a truly lovely answer, we need to solve each inequation for
\item the variable (in this case $x$).
\item When we solve each inequation for the variable, we make the
set builder notation \emph{explicit}.
\end{PenList}
\end{frame}
\begin{frame}{Explict Form}
Solving $ x \neq 0$ and $x-2 \neq 0$ is easy:
\[
x \neq 0, \quad x \neq 2.
\]
Solving \(\left(\frac{1}{x} + \frac{1}{x-2} \neq 0 \right) \) takes
a bit more work. Assuming that $x \neq 0$ and $x \neq 2$, we have
\begin{align*}
\left[\frac{1}{x} + \frac{1}{x-2} \neq 0 \right]
&= \left[\frac{2 x-2}{{{x}^{2}}-2 x} \neq 0 \right], &\mbox{(combine)}\\
&= \left[2 x-2 \neq 0 \right], &(\mbox{algebra}) \\
&= \left[x \neq 1 \right], &(\mbox{algebra})
\end{align*}
In \emph{explicit} set builder notation, the natural domain Is\
\begin{equation*}
\left\{ x \in \reals \bigg | \left(x \neq 0\right)
\land \left(x \neq 2 \right) \land
\left(x \neq 1 \right) \right\}
\end{equation*}
\end{frame}
\begin{frame}{Remove all Doubt}
If you are a bit uncertain of why the natural domain excludes $1$,
try evaluating at one:
\begin{equation*}
\frac{1}{\frac{1}{1} + \frac{1}{1-2}} = \frac{1}{1 - 1} =
\mbox{\textbf{Rubbish!}}
\end{equation*}
\vfill.
\end{frame}
\begin{frame}{Implicit requirement to be explicit}
\begin{require} Unless stated otherwise, set builder notation
must be explicit. The reason for this is that when expressed
in explicit form, it's easy-peasy to express the set in either
interval notion or pictorially.
\end{require}
\begin{myexample} Implicit (not allowed)
\begin{equation*}
\left\{ x \in \reals \bigg | \left(x \neq 0 \right)
\land \left(x-2 \neq 0 \right) \land
\left(\frac{1}{x} + \frac{1}{x-2} \neq 0 \right) \right\}.
\end{equation*}
Explicit (correct)
\begin{equation*}
\left\{ x \in \reals \bigg | \left(x \neq 0\right)
\land \left(x \neq 2 \right) \land
\left(x \neq 1 \right) \right\}.
\end{equation*}
\end{myexample}
\end{frame}
\begin{frame}{This is a Test}
\textbf{Question} The natural domain of
\(\frac{1}{\frac{1}{x} + \frac{1}{x-2}} \) is
\begin{equation*}
\left\{ x \in \reals \bigg | \left(x \neq 0\right)
\land \left(x \neq 2 \right) \land
\left(x \neq 1 \right) \right\}
\end{equation*}
What's the natural domain of the similar, but different expression
\begin{equation*}
107 + x^2 + \frac{46 + x}{\frac{1}{x} + \frac{1}{x-2}}
\end{equation*}
\textbf{Answer} Gathering the denominators, in implicit form, the
natural domain is
\begin{equation*}
\left\{ x \in \reals \bigg | \left(x \neq 0 \right)
\land \left(x-2 \neq 0 \right) \land
\left(\frac{1}{x} + \frac{1}{x-2} \neq 0 \right) \right\}
\end{equation*}
This is no different from the condition for the domain of
\(\frac{1}{\frac{1}{x} + \frac{1}{x-2}}\).
\end{frame}
\begin{frame}{Does it matter?}
\textbf{Question} So the \(107 + x^2\) and \(46 + x\) don't matter?
\textbf{Answer} The natural domain of \(\frac{1}{\frac{1}{x} + \frac{1}{x-2}} \)
and \( 107 + x^2 + \frac{46 + x}{\frac{1}{x} + \frac{1}{x-2}} \) are
the same.
This is the case because both expressions have identical denominators.
\vfill
\end{frame}
\begin{frame}{Resist Simplification}
\textbf{Question} Which calculation of the natural domain
of \(\frac{1}{\frac{x-3}{x-4}} \) is correct?
\textbf{Answer 1}
\[
\left \{ x \big | \left(x-4 \neq 0\right) \land
\left(\frac{x-3}{x-4} \neq 0 \right) \right \} =
\left \{ x \big | \left(x \neq 4 \right) \land
\left(x \neq 3 \right) \right \}.
\]
\textbf{Answer 2} First simplify \(\frac{1}{\frac{x-3}{x-4}} \) to
\(\frac{x-4}{x-3} \). Second the domain is
\[
\left \{ x \big | x-3 \neq 0 \right \} =
\left \{ x \big | x \neq 3 \right \}.
\]
\textbf{Fact} Answer 2 is wrong: the number $4$ is definitely
\emph{not} in the domain of \(\frac{1}{\frac{x-3}{x-4}} \). The Simplification
\(\frac{1}{\frac{a}{b}} = \frac{b}{a}\) looks innocent enough, but
it requires that both $a$ and $b$ be nonzero.
\end{frame}
\end{document}