-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15.a3c算法实现(连续).py
382 lines (309 loc) · 13.3 KB
/
15.a3c算法实现(连续).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import torch
import gym
import numpy as np
import os
import multiprocessing as mp
from multiprocessing import Manager
from multiprocessing import Pool
torch.set_default_dtype(torch.float64)
class Stack_queue:
def __init__(self):
self.list = []
def get(self):
o = self.list[-1]
del self.list[-1]
return o
def put(self, o):
self.list.append(o)
def qsize(self):
return len(self.list)
class memory:
def __init__(self, env, gamma=0.9):
self.env = env
self.gamma = 0.9
self.state_dimension = self.env.observation_space.shape[0]
try:self.action_dimension = self.env.action_space.shape[0]
except:self.action_dimension = 1
self.data = Stack_queue()
def put(self, state, action, reward, next_state):
self.data.put(np.hstack((state, action, reward, next_state)))
def get(self):
return self.data.get()
def preprocess(self):
length_real = self.data.qsize()
self.state = np.zeros((length_real, self.state_dimension))
self.action = np.zeros((length_real, self.action_dimension), dtype=np.float32)
self.reward = np.zeros((length_real, 1))
self.next_state = np.zeros((length_real, self.state_dimension))
value_last = 0
for i in range(length_real)[::-1]:
transaction = self.data.get()
state = transaction[:self.state_dimension]
action = transaction[self.state_dimension:
self.state_dimension+self.action_dimension]
value = transaction[self.state_dimension+self.action_dimension:
self.state_dimension+self.action_dimension+1]
next_state = transaction[-self.state_dimension:]
value_last = value + self.gamma * value_last
self.state[i] = state
self.reward[i] = value_last
self.action[i] = action
self.next_state[i] = next_state
class actor:
def __init__(self, env, hidden_dimension=200, learning_rate=1e-3, delta=0.02):
self.env = env
self.hidden_dimension = hidden_dimension
self.learning_rate = learning_rate
self.delta = delta
self.state_dimension = self.env.observation_space.shape[0]
try:self.action_dimension = self.env.action_space.shape[0]
except:self.action_dimension = self.env.action_space.n
self.model = self.__create_network()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate)
self.entropy = torch.nn.CrossEntropyLoss(reduction='none')
def learn(self, state, action, advantage):
state = torch.from_numpy(state)
action = torch.tensor(action)
advantage = torch.tensor(advantage)
mean, std = self.model(state)
distribution = torch.distributions.Normal(mean, std)
action_prob_log = distribution.log_prob(action)
loss = -action_prob_log * advantage
action_prob = torch.exp(action_prob_log)
entropy = torch.sum(-torch.log(action_prob) * action_prob)
loss += self.delta * (-entropy)
loss = torch.mean(loss)
self.optimizer.zero_grad()
loss.backward()
# self.optimizer.step()
return loss.item(), self.model.parameters()
def output_action(self, state):
state = torch.from_numpy(state)
mean, std = self.model(state)
# print('std value %.10f'%std)
distribution = torch.distributions.normal.Normal(mean, std)
action = distribution.sample()
action = np.array(torch.clip(action, -2, 2))
return action
class actor_net(torch.nn.Module):
def __init__(self, dim_state, dim_action, dim_hidden):
super().__init__()
self.linear1 = torch.nn.Linear(dim_state, dim_hidden)
self.activate1 = torch.nn.ReLU6()
self.linear2 = torch.nn.Linear(dim_hidden, dim_action)
self.mean = torch.nn.Tanh()
self.linear3 = torch.nn.Linear(dim_hidden, dim_action)
self.std = torch.nn.Softplus()
# essential
for layer in [self.linear1, self.linear2, self.linear3]:
torch.nn.init.normal_(layer.weight, mean=0.0, std=0.1)
torch.nn.init.constant_(layer.bias, 0.0)
def forward(self, state):
hidden = self.activate1(self.linear1(state))
mean_value = self.linear2(hidden)
mean = self.mean(mean_value) * 2
std_value = self.linear3(hidden)
std = self.std(std_value) * 0.001
return mean, std
def __create_network(self):
return self.actor_net(self.state_dimension,
self.action_dimension,
self.hidden_dimension)
class critic:
def __init__(self, env, hidden_dimension=200, learning_rate=1e-3, gamma=0.9):
self.env = env
self.hidden_dimension = hidden_dimension
self.learning_rate = learning_rate
self.gamma = gamma
self.state_dimension = self.env.observation_space.shape[0]
try:self.action_dimension = self.env.action_space.shape[0]
except:self.action_dimension = 1
self.model = self.__create_network()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate)
def learn(self, state, reward, next_state):
state = torch.from_numpy(state)
reward = torch.tensor(reward)
next_state = torch.from_numpy(next_state)
# value_next = self.model(next_state).detach()
value = self.model(state)
advantage = reward - value
loss = torch.square(advantage)
loss = torch.mean(loss)
self.optimizer.zero_grad()
loss.backward()
# self.optimizer.step()
return advantage.tolist(), self.model.parameters()
def __create_network(self):
return torch.nn.Sequential(torch.nn.Linear(self.state_dimension, self.hidden_dimension),
torch.nn.ReLU6(),
torch.nn.Linear(self.hidden_dimension,
self.action_dimension)
)
class agent_actor_critic(mp.Process):
def __init__(self, env_name, epoch, q_in, q_out):
mp.Process.__init__(self)
self.env_name = env_name
self.epoch = epoch
self.q_in = q_in
self.q_out = q_out
self.env = gym.make(self.env_name)
self.critic_network = critic(self.env)
self.actor_network = actor(self.env)
self.memory = memory(self.env)
self.id = os.getpid()
self.display = 30
def run(self):
self.learn()
def learn(self):
print('task start, pid: %d'%self.id)
reward_collect = []
for i in range(self.epoch):
self.reset_param()
state = self.env.reset()
reward_total = 0
while True:
action = self.actor_network.output_action(state)
next_state, reward, done, info = self.env.step(action)
reward_total += reward
# essential for mdp, reward: -1~1
reward = reward/8 + 1
# if reward_total < -800:
# done = True
# reward -= 1
self.memory.put(state, action ,reward, next_state)
state = next_state
if done:
self.memory.preprocess()
#self.memory.next_state is NOT used here
advantage, critic_param = self.critic_network.learn(self.memory.state,
self.memory.reward,
self.memory.next_state)
loss, actor_param = self.actor_network.learn(self.memory.state,
self.memory.action, advantage)
self.update_param()
break
# reward_collect.append(reward_total)
# if (i+1) % 30 == 0:
# print('epoch %5d, reward is %.5f'%(i, np.array(reward_collect).mean()))
# reward_collect = []
def reset_param(self):
critic_net, actor_net = self.q_in.get()
self.critic_network.model.load_state_dict(
critic_net.state_dict())
self.actor_network.model.load_state_dict(
actor_net.state_dict())
def update_param(self):
critic_grad = []
actor_grad = []
for each in self.critic_network.model.parameters():
critic_grad.append(each.grad)
for each in self.actor_network.model.parameters():
actor_grad.append(each.grad)
self.q_out.put((critic_grad,
actor_grad))
class agent_master(mp.Process):
def __init__(self, env_name, epoch, work_cnt, q_in, q_out):
mp.Process.__init__(self)
self.env = gym.make(env_name)
self.epoch = epoch
self.work_cnt = work_cnt
self.q_in = q_in
self.q_out = q_out
self.critic_network = critic(self.env)
self.actor_network = actor(self.env)
def run(self):
print('master start, pid: %d'%os.getpid())
for i in range(self.epoch):
for _ in range(self.work_cnt):
self.put()
self.critic_network.optimizer.zero_grad()
self.actor_network.optimizer.zero_grad()
for _ in range(self.work_cnt):
self.get()
self.critic_network.optimizer.step()
self.actor_network.optimizer.step()
# for _ in range(self.work_cnt):
# self.get_rand_grad()
if (i+1) % 1 == 0:
self.perform_test(i)
def perform_test(self, i):
reward_total = 0
state = self.env.reset()
while True:
# self.env.render()
action = self.actor_network.output_action(state)
next_state, reward, done, info = self.env.step(action)
state = next_state
reward_total += reward
if done :
break
print('%d, performance : reward is %.6f'%(i, reward_total))
def put(self):
self.q_in.put((self.critic_network.model,
self.actor_network.model))
def get(self):
critic_grad, actor_grad = self.q_out.get()
for lo_grad, glo_model in zip(critic_grad,
self.critic_network.model.parameters()):
if glo_model._grad is None:
glo_model._grad = lo_grad
else:
glo_model._grad += lo_grad
for lo_grad, glo_model in zip(actor_grad,
self.actor_network.model.parameters()):
if glo_model._grad is None:
glo_model._grad = lo_grad
else:
glo_model._grad += lo_grad
def get_rand_grad(self):
critic_grad, actor_grad = self.q_out.get()
self.critic_network.optimizer.zero_grad()
self.actor_network.optimizer.zero_grad()
for lo_grad, glo_model in zip(critic_grad,
self.critic_network.model.parameters()):
if glo_model._grad is None:
glo_model._grad = lo_grad
else:
glo_model._grad += lo_grad
for lo_grad, glo_model in zip(actor_grad,
self.actor_network.model.parameters()):
if glo_model._grad is None:
glo_model._grad = lo_grad
else:
glo_model._grad += lo_grad
self.critic_network.optimizer.step()
self.actor_network.optimizer.step()
class algorithm_a3c:
#Pendulum-v0
#BipedalWalker-v3
def __init__(self, env_name='Pendulum-v0', worker_cnt=4, epoch=1000):
self.env_name = env_name
self.worker_cnt = worker_cnt
self.epoch = epoch
def start_task(self):
slaver = agent_actor_critic(self.env_name, self.epoch,
self.q_in, self.q_out)
slaver.run()
def start_master(self):
master = agent_master(self.env_name, self.epoch,
self.worker_cnt,
self.q_in, self.q_out)
master.run()
def start_execute(self):
self.q_in = Manager().Queue()
self.q_out = Manager().Queue()
pool = Pool(self.worker_cnt+1)
for i in range(self.worker_cnt):
pool.apply_async(self.start_task,
args=( ),
)
pool.apply_async(self.start_master,
args=( ),
)
pool.close()
pool.join()
print('this is the end of the program.')
if __name__ == '__main__':
torch.set_default_dtype(torch.float64)
algorithm_test = algorithm_a3c()
algorithm_test.start_execute()