-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist-nn.py
241 lines (196 loc) · 8.67 KB
/
mnist-nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/python
#
# MNIST digit recognizer
#
# The simple recognizer is implememted purely in Python. The purpose of
# this program is to present the details how to constructa simple neural
# network for prediction from scratch:
#
# 1. To build a 3-layer neural network (only one hidden layer).
# 2. To train a model with self-implemented SGD (stochastic gradient descent).
# 3. To predict data with the trained model.
#
# This program is based on the exercise of Andrew Ng's machine learning
# course on Coursera: https://www.coursera.org/learn/machine-learning
#
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import math
import scipy.io as sio
# Structure of the 3-layer neural network.
Input_layer_size = 400
Hidden_layer_size = 25
Output_layer_size = 10
def convert_memory_ordering_f2c(array):
if np.isfortran(array) is True:
return np.ascontiguousarray(array)
else:
return array
def load_training_data(training_file='mnistdata.mat'):
'''Load training data (mnistdata.mat) and return (inputs, labels).
inputs: numpy array with size (5000, 400).
labels: numpy array with size (5000, 1).
The training data is from Andrew Ng's exercise of the Coursera
machine learning course (ex4data1.mat).
'''
training_data = sio.loadmat(training_file)
inputs = training_data['X'].astype('f8')
inputs = convert_memory_ordering_f2c(inputs)
labels = training_data['y']
labels = convert_memory_ordering_f2c(labels)
return (inputs, labels)
def load_weights(weight_file='mnistweights.mat'):
'''Load training data (mnistdata.mat) and return (inputs, labels).
The weights file is from Andrew Ng's exercise of the Coursera
machine learning course (ex4weights.mat).
'''
weights = sio.loadmat(weight_file)
theta1 = convert_memory_ordering_f2c(weights['Theta1'].astype('f8')) # size: 25 entries, each has 401 numbers
theta2 = convert_memory_ordering_f2c(weights['Theta2'].astype('f8')) # size: 10 entries, each has 26 numbers
return (theta1, theta2)
def rand_init_weights(size_in, size_out):
epsilon_init = 0.12
return np.random.rand(size_out, 1 + size_in) * 2 * epsilon_init - epsilon_init
def sigmoid(z):
return 1.0 / (1 + pow(math.e, -z))
def sigmoid_gradient(z):
return sigmoid(z) * (1 - sigmoid(z))
def cost_function(theta1, theta2, input_layer_size, hidden_layer_size, output_layer_size, inputs, labels, regular=0):
'''
Note: theta1, theta2, inputs, labels are numpy arrays:
theta1: (25, 401)
theta2: (10, 26)
inputs: (5000, 400)
labels: (5000, 1)
return: cost and weights
'''
# Construct neural network.
#
# Forward propagation is to get h_theta(x), and is done during the
# construction.
input_layer = np.insert(inputs, 0, 1, axis=1) # add bias, 5000x401
hidden_layer = np.dot(input_layer, np.transpose(theta1))
hidden_layer = sigmoid(hidden_layer)
hidden_layer = np.insert(hidden_layer, 0, 1, axis=1) # add bias, 5000x26
output_layer = np.dot(hidden_layer, np.transpose(theta2)) # 5000x10
output_layer = sigmoid(output_layer)
#print('input layer shape: {}'.format(input_layer.shape))
#print('hidden layer shape: {}'.format(hidden_layer.shape))
#print('output layer shape: {}'.format(output_layer.shape))
# Calculate cost
cost = 0.0
for training_index in xrange(len(inputs)):
# transform label y[i] from a number to a vector.
#
# Note:
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# 1 2 3 4 5 6 7 8 9 10
#
# if y[i] is 0 -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
# if y[i] is 1 -> [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
outputs = [0] * output_layer_size
outputs[labels[training_index]-1] = 1
for k in xrange(output_layer_size):
cost += -outputs[k] * math.log(output_layer[training_index][k]) - (1 - outputs[k]) * math.log(1 - output_layer[training_index][k])
cost /= len(inputs)
# back propagation: calculate gradiants
theta1_grad = np.zeros_like(theta1) # 25x401
theta2_grad = np.zeros_like(theta2) # 10x26
for index in xrange(len(inputs)):
# transform label y[i] from a number to a vector.
outputs = np.zeros((1, output_layer_size)) # (1,10)
outputs[0][labels[index]-1] = 1
# Forward propagation has been done in network construction, aka
# we already have h_theta(x) (aka output_layer).
#
# FIXME: output_layer is an improper name. It should be the
# output of the output layer.
# calculate delta3
delta3 = (output_layer[index] - outputs).T # (10,1)
# calculate delta2
z2 = np.dot(theta1, input_layer[index:index+1].T) # (25,401) x (401,1)
z2 = np.insert(z2, 0, 1, axis=0) # add bias, (26,1)
delta2 = np.multiply(
np.dot(theta2.T, delta3), # (26,10) x (10,1)
sigmoid_gradient(z2) # (26,1)
)
delta2 = delta2[1:] # (25,1)
# calculate gradients of theta1 and theta2
# (25,401) = (25,1) x (1,401)
theta1_grad += np.dot(delta2, input_layer[index:index+1])
# (10,26) = (10,1) x (1,26)
theta2_grad += np.dot(delta3, hidden_layer[index:index+1])
theta1_grad /= len(inputs)
theta2_grad /= len(inputs)
return cost, (theta1_grad, theta2_grad)
def gradient_descent(inputs, labels, learningrate=0.8, iteration=50):
'''
@return cost and trained model (weights).
'''
rand_theta1 = rand_init_weights(Input_layer_size, Hidden_layer_size)
rand_theta2 = rand_init_weights(Hidden_layer_size, Output_layer_size)
theta1 = rand_theta1
theta2 = rand_theta2
cost = 0.0
for i in xrange(iteration):
cost, (theta1_grad, theta2_grad) = cost_function(theta1, theta2,
Input_layer_size, Hidden_layer_size, Output_layer_size,
inputs, labels, regular=0)
theta1 -= learningrate * theta1_grad
theta2 -= learningrate * theta2_grad
print('Iteration {0} (learning rate {2}, iteration {3}), cost: {1}'.format(i+1, cost, learningrate, iteration))
return cost, (theta1, theta2)
def train(inputs, labels, learningrate=0.8, iteration=50):
cost, model = gradient_descent(inputs, labels, learningrate, iteration)
return model
def predict(model, inputs):
theta1, theta2 = model
a1 = np.insert(inputs, 0, 1, axis=1) # add bias, (5000,401)
a2 = np.dot(a1, theta1.T) # (5000,401) x (401,25)
a2 = sigmoid(a2)
a2 = np.insert(a2, 0, 1, axis=1) # add bias, (5000,26)
a3 = np.dot(a2, theta2.T) # (5000,26) x (26,10)
a3 = sigmoid(a3) # (5000,10)
return [i.argmax()+1 for i in a3]
if __name__ == '__main__':
# Note: There are 10 units which present the digits [1-9, 0]
# (in order) in the output layer.
inputs, labels = load_training_data()
# train the model from scratch and predict based on it
# learning rate 0.10, iteration 60: 36% (cost: 3.217)
# learning rate 1.75, iteration 50: 77%
# learning rate 1.90, iteration 50: 75%
# learning rate 2.00, iteration 50: 82%
# learning rate 2.00, iteration 100: 87%
# learning rate 2.00, iteration 200: 93% (cost: 0.572)
# learning rate 2.00, iteration 300: 94% (cost: 0.485)
# learning rate 2.05, iteration 50: 79%
# learning rate 2.20, iteration 50: 64%
model = train(inputs, labels, learningrate=0.1, iteration=60)
# Load pretrained weights for debugging precision.
# The precision will be around 97% (0.9756).
#weights = load_weights()
#theta1 = weights[0] # size: 25 entries, each has 401 numbers
#theta2 = weights[1] # size: 10 entries, each has 26 numbers
#model = (theta1, theta2)
#cost, (theta1_grad, theta2_grad) = cost_function(theta1, theta2, Input_layer_size, Hidden_layer_size, Output_layer_size, inputs, labels, regular=0)
#print('cost:', cost)
outputs = predict(model, inputs)
correct_prediction = 0
for i, predict in enumerate(outputs):
if predict == labels[i][0]:
correct_prediction += 1
precision = float(correct_prediction) / len(labels)
print('precision: {}'.format(precision))