-
Notifications
You must be signed in to change notification settings - Fork 3
/
schedulers.py
98 lines (79 loc) · 3.95 KB
/
schedulers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import math
import functools
from torch.optim.lr_scheduler import _LRScheduler
def poly_learning_rate(epoch, warm_up_epoch, start_decay_epoch, total_epoch, min_lr):
# Linear Warmup
if (epoch < warm_up_epoch):
return max(0, epoch / warm_up_epoch)
else :
lr = 1.0 - max(0, epoch - start_decay_epoch) /(float(total_epoch) - start_decay_epoch)
if lr <= min_lr:
lr = min_lr
return lr
class CosineAnnealingWarmUpRestarts(_LRScheduler):
def __init__(self, optimizer, T_0, T_mult=1, eta_max=0.1, T_up=0, gamma=1., last_epoch=-1):
if T_0 <= 0 or not isinstance(T_0, int):
raise ValueError("Expected positive integer T_0, but got {}".format(T_0))
if T_mult < 1 or not isinstance(T_mult, int):
raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult))
if T_up < 0 or not isinstance(T_up, int):
raise ValueError("Expected positive integer T_up, but got {}".format(T_up))
self.T_0 = T_0
self.T_mult = T_mult
self.base_eta_max = eta_max
self.eta_max = eta_max
self.T_up = T_up
self.T_i = T_0
self.gamma = gamma
self.cycle = 0
self.T_cur = last_epoch
super(CosineAnnealingWarmUpRestarts, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.T_cur == -1:
return self.base_lrs
elif self.T_cur < self.T_up:
return [(self.eta_max - base_lr)*self.T_cur / self.T_up + base_lr for base_lr in self.base_lrs]
else:
return [base_lr + (self.eta_max - base_lr) * (1 + math.cos(math.pi * (self.T_cur-self.T_up) / (self.T_i - self.T_up))) / 2
for base_lr in self.base_lrs]
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.T_cur = self.T_cur + 1
if self.T_cur >= self.T_i:
self.cycle += 1
self.T_cur = self.T_cur - self.T_i
self.T_i = (self.T_i - self.T_up) * self.T_mult + self.T_up
else:
if epoch >= self.T_0:
if self.T_mult == 1:
self.T_cur = epoch % self.T_0
self.cycle = epoch // self.T_0
else:
n = int(math.log((epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult))
self.cycle = n
self.T_cur = epoch - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1)
self.T_i = self.T_0 * self.T_mult ** (n)
else:
self.T_i = self.T_0
self.T_cur = epoch
self.eta_max = self.base_eta_max * (self.gamma**self.cycle)
self.last_epoch = math.floor(epoch)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
def get_scheduler(name, optimizer, args):
if name == 'poly_lr':
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=functools.partial(poly_learning_rate, warm_up_epoch=args.warmup_epochs, start_decay_epoch=args.epochs/10, total_epoch=args.epochs, min_lr=args.min_lr))
elif name == 'cosine_annealing_warm_restart':
# optimizer에서 시작할 learning rate를 일반적으로 사용하는 learning rate가 아닌 0에 가까운 아주 작은 값을 입력해야 합니다.
# ref: https://gaussian37.github.io/dl-pytorch-lr_scheduler/
# 주기 100 epoch
# 최고 max lr = eta_max
# T_up -> warm_up시 필요한 epoch
# gamma -> 몇 퍼센트 살릴지 0.6 이면, 다음 lr = 0.6 * 현재 lr
# lr => 최소 learning rate 때문에 작게 설정해야한다!
lr_scheduler = CosineAnnealingWarmUpRestarts(optimizer, T_0=100, T_mult=1, eta_max=0.001, T_up=10, gamma=0.6)
else :
raise KeyError("Wrong scheduler name `{}`".format(name))
return lr_scheduler