-
Notifications
You must be signed in to change notification settings - Fork 42
/
train.py
66 lines (60 loc) · 2.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import pandas as pd
import os
def flat_to_one_hot(labels):
num_classes = np.unique(labels).shape[0]
num_labels = labels.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels,num_classes))
labels_one_hot.flat[index_offset + labels.ravel()] = 1
return labels_one_hot
def get_mnist_data(validation_size=2000):
data = pd.read_csv('Data/train.csv')
images = data.iloc[:,1:].values
labels = data[[0]].values.ravel()
# Convert the images from uint8 to double:
images = np.multiply(images,1.0/255.0)
# Convert the labels to one hot encoding:
labels = flat_to_one_hot(labels)
# Split the data into validation and training data:
validation_images = images[:validation_size]
validation_labels = labels[:validation_size]
train_images = images[validation_size:]
train_labels = labels[validation_size:]
# Convert the images from flat to matrix form:
train_images = train_images.reshape(train_images.shape[0],1,28,28)
validation_images = validation_images.reshape(validation_images.shape[0],1,28,28)
# Return the data:
return (train_images,train_labels),(validation_images,validation_labels)
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
if __name__ == '__main__':
(X_train,y_train),(X_val,y_val) = get_mnist_data()
# Construct the model:
model = Sequential()
model.add(Convolution2D(nb_filter=32,nb_row=5,nb_col=5,border_mode='same',input_shape=(1,28,28)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2),border_mode='same'))
model.add(Convolution2D(nb_filter=64,nb_row=5,nb_col=5,border_mode='same',input_shape=(32,14,14)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2),border_mode='same'))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
if os.path.exists('./model_weights.h5'):
model.load_weights('model_weights.h5')
# Train the model:
model.fit(X_train,y_train,batch_size=50,nb_epoch=1,verbose=1,validation_data=(X_val,y_val))
score = model.evaluate(X_val,y_val,verbose=0)
print('Validation score:', score[0])
print('Validation accuracy:', score[1])
# Save the model:
json_string = model.to_json()
open('model_architecture.json','w').write(json_string)
# Save the weights
model.save_weights('model_weights.h5',overwrite=True)