-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnvarynoise.py
202 lines (155 loc) · 6.26 KB
/
nvarynoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
### change in noise ["001","002","005","01","02","05"] and plots for each number of true electrons n= 1,2,3,4
import ROOT as r
from ts_digi_container import *
import pandas as pd
import numpy as np
from array import array
r.gStyle.SetOptStat(0)
r.gROOT.ProcessLine(".L tdrstyle.C")
r.gROOT.ProcessLine("setTDRStyle()")
r.gROOT.SetBatch(True)
## set configurable parameters
coll="TriggerPadTagger" #other options: "TriggerPadUpSimHits", "TriggerPadDownSimHits"
Noise =array("d")
stacks = []
# plot Graph
c1 = r.TCanvas( 'c1', 'c1',800,800)
c1.SetGrid()
min_pe = 2
diff_noise = ["001","002","005","01","02","05"] #
Dict = dict()
for noise in diff_noise:
l=float("0."+noise)
Noise.append(l)
cont = ts_digi_container("~whitbeck/raid/LDMX/trigger_pad_sim/Dec18/trig_scin_digi_mip_respons_10_noise_0p"+noise+".root")
cont.setup()
## initialize histograms
hist = r.TH2F("confusion_hist",coll+";True Electrons;Pred Electrons",8,-0.5,7.5,8,-0.5,7.5)
for i in range(cont.tin.GetEntries()):
#if i >1000: break
## initialize container
cont.getEvent(i)
## get true number of electrons
true_num=cont.count_true(coll+"SimHits")
#### ALGORITHM 1: COUNT THE NUMBER HITS IN AN ARRAY
count_hits=cont.count_hits(coll+"Digi",min_pe)
count_hits_up=cont.count_hits("TriggerPadUpDigi",min_pe)
#### ALGORITHM 2: COUNT THE NUMBER OF HIT CLUSTERS
count_clusters=cont.count_clusters(coll+"Digi",min_pe)
count_clusters_up=cont.count_clusters("TriggerPadUpDigi",min_pe)
## fill histograms
hist.Fill(true_num,count_hits)
#hist.Fill(true_num, min(count_hits,count_hits_up))
#hist.Fill(true_num,count_clusters)
#hist.Fill(true_num, min(count_clusters,count_clusters_up))
for x in range(2,6): # four blocks in each histogram
values = [0.]*3
for y in range(1,hist.GetNbinsY()+1):
if x==y : values[0]+= hist.GetBinContent(x,y) # values on the diagonal
if y<x : values[1] += hist.GetBinContent(x,y) # values below the diagonal
if y>x : values[2] += hist.GetBinContent(x,y) # values above the diagonal
total = reduce(lambda x,y : x+y, values)
#print(total)
event_rate = map(lambda x: (x/total), values)
Dict.setdefault(x,[]).append(event_rate)
print Dict
print "\n"
# Initializing all the canvas
c1 = r.TCanvas( 'c1', 'c1', 1000, 1000)
c1.SetGrid()
for i in range(2,6):
efficiency, under_prediction, over_prediction = array("d"),array("d"),array("d")
for x in np. arange(0,6,1):
for y in np.arange(0,3,1):
if y==0: efficiency.append(Dict[i][x][y])
if y==1: under_prediction.append(Dict[i][x][y])
if y==2: over_prediction.append(Dict[i][x][y])
gr1 = r.TGraph( 6, Noise, efficiency)
stacks.append(gr1)
gr1.SetLineColor( i+4 )
gr1.SetLineWidth( 4 )
gr1.SetMarkerStyle( 21 )
gr1.SetTitle( 'n = '+ str(i-1))
#gr1.GetXaxis().SetNdivisions(505)
gr1.GetXaxis().SetTitle( 'Noise' )
gr1.GetYaxis().SetTitle( 'Efficiency Rate' )
gr1.GetYaxis().SetRangeUser(0,1)
#gr1.GetXaxis().SetLimits(0.000001,0.001)
gr1.GetXaxis().SetLabelSize(0.03)
gr1.GetYaxis().SetLabelSize(0.03)
if i-1 == 1: gr1.Draw( 'ACP' )
else : gr1.Draw('CP')
c1.BuildLegend(0.6,0.2,0.9,0.35,"Number of True Electrons (n):")
c1.SaveAs("ch_resp10_NoisevsEff.png")
for i in range(2,6):
efficiency, under_prediction, over_prediction = array("d"),array("d"),array("d")
for x in np. arange(0,6,1):
for y in np.arange(0,3,1):
if y==0: efficiency.append(Dict[i][x][y])
if y==1: under_prediction.append(Dict[i][x][y])
if y==2: over_prediction.append(Dict[i][x][y])
gr = r.TGraph( 6, Noise, under_prediction)
stacks.append(gr)
gr.SetLineColor( i+4 )
gr.SetLineWidth( 4 )
gr.SetMarkerStyle( 21 )
gr.SetTitle( 'n = '+ str(i-1))
#gr.GetXaxis().SetNdivisions(505)
gr.GetXaxis().SetTitle( 'Noise ' )
gr.GetYaxis().SetTitle( 'Under Prediction Rate' )
gr.GetYaxis().SetRangeUser(0,1)
#gr.GetXaxis().SetLimits(0.000001,0.001)
gr.GetXaxis().SetLabelSize(0.03)
gr.GetYaxis().SetLabelSize(0.03)
if i-1 == 1: gr.Draw( 'ACP' )
else : gr.Draw('CP')
c1.BuildLegend(0.6,0.8,0.9,0.95,"Number of True Electrons (n):")
c1.SaveAs("ch_resp10_NoisevsUnder.png")
for i in range(2,6):
efficiency, under_prediction, over_prediction = array("d"),array("d"),array("d")
for x in np. arange(0,6,1):
for y in np.arange(0,3,1):
if y==0: efficiency.append(Dict[i][x][y])
if y==1: under_prediction.append(Dict[i][x][y])
if y==2: over_prediction.append(Dict[i][x][y])
gr = r.TGraph(6, Noise, over_prediction)
stacks.append(gr)
gr.SetLineColor( i+4 )
gr.SetLineWidth( 4 )
gr.SetMarkerStyle( 21 )
gr.SetTitle( 'n = '+ str(i-1))
#gr.GetXaxis().SetNdivisions(505)
gr.GetXaxis().SetTitle( 'Noise' )
gr.GetYaxis().SetTitle( 'Over Prediction Rate' )
gr.GetYaxis().SetRangeUser(0.01, 0.08)
gr.GetXaxis().SetLabelSize(0.03)
gr.GetYaxis().SetLabelSize(0.03)
if i-1 == 1: gr.Draw( 'ALP' )
else : gr.Draw('LP')
#c1.SetLogy()
c1.BuildLegend(0.25,0.65,0.55,0.8,"Number of True Electrons (n):")
c1.SaveAs("ch_resp10_NoisevsOver.png")
for i in range(2,6):
efficiency, under_prediction, over_prediction = array("d"),array("d"),array("d")
for x in np. arange(0,6,1):
for y in np.arange(0,3,1):
if y==0: efficiency.append(Dict[i][x][y])
if y==1: under_prediction.append(Dict[i][x][y])
if y==2: over_prediction.append(Dict[i][x][y])
gr = r.TGraph( 6, over_prediction, efficiency)
stacks.append(gr)
gr.SetLineColor( i+4 )
gr.SetLineWidth( 4 )
gr.SetMarkerStyle( 21 )
gr.SetTitle( 'n = '+ str(i-1))
#gr.GetXaxis().SetNdivisions(505)
gr.GetXaxis().SetTitle( 'Overprediction Rate' )
gr.GetYaxis().SetTitle( 'Efficiency Rate' )
gr.GetYaxis().SetRangeUser(0,1)
gr.GetXaxis().SetLimits(0.01, 0.08)
gr.GetXaxis().SetLabelSize(0.03)
gr.GetYaxis().SetLabelSize(0.03)
if i-1 == 1: gr.Draw( 'ALP' )
else : gr.Draw('LP')
c1.BuildLegend(0.6,0.15,0.9,0.3,"Number of True Electrons (n):")
c1.SaveAs("ch_resp10_OvervsEff.png")