-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patha3c_qbert_image_transforms_42.py
131 lines (120 loc) · 3.51 KB
/
a3c_qbert_image_transforms_42.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import itertools
from ray import tune
from collections import OrderedDict
num_seeds = 5
timesteps_total = 10_000_000
var_env_configs = OrderedDict(
{
"image_transforms": [
"none",
"shift",
# "scale",
# "flip",
# "rotate",
# "shift,scale,rotate,flip",
], # image_transforms,
"dummy_seed": [i for i in range(num_seeds)],
}
)
var_configs = OrderedDict({"env": var_env_configs})
env_config = {
"env": "GymEnvWrapper-Atari",
"env_config": {
"AtariEnv": {
"game": "qbert",
"obs_type": "image",
"frameskip": 1,
},
# "GymEnvWrapper": {
"atari_preprocessing": True,
"frame_skip": 4,
"grayscale_obs": False, # grayscale_obs gives a 2-D observation tensor.
"image_width": 40,
"image_padding": 30,
"state_space_type": "discrete",
"action_space_type": "discrete",
"seed": 0,
# },
# 'seed': 0, #seed
},
}
algorithm = "A3C"
agent_config = { # Taken from Ray tuned_examples
"clip_rewards": True,
"lr": 1e-4,
# Value Function Loss coefficient
"vf_loss_coeff": 2.5,
# Entropy coefficient
"entropy_coeff": 0.01,
"min_iter_time_s": 0,
"num_envs_per_worker": 5,
"num_gpus": 0,
"num_workers": 3,
"rollout_fragment_length": 10,
"timesteps_per_iteration": 10000,
"tf_session_args": {
# note: overriden by `local_tf_session_args`
"intra_op_parallelism_threads": 4,
"inter_op_parallelism_threads": 4,
# "gpu_options": {
# "allow_growth": True,
# },
# "log_device_placement": False,
"device_count": {
"CPU": 2,
# "GPU": 0,
},
# "allow_soft_placement": True, # required by PPO multi-gpu
},
# Override the following tf session args on the local worker
"local_tf_session_args": {
"intra_op_parallelism_threads": 4,
"inter_op_parallelism_threads": 4,
},
}
filters_100x100 = [
[
16,
[8, 8],
4,
], # changes from 42x42x1 with padding 2 to 22x22x16 (or 52x52x16 for 102x102x1)
[32, [4, 4], 2],
[
128,
[13, 13],
1,
],
]
model_config = {
"model": {
"fcnet_hiddens": [256, 256],
# "custom_preprocessor": "ohe",
"custom_options": {}, # extra options to pass to your preprocessor
"conv_activation": "relu",
"conv_filters": filters_100x100,
# "fcnet_activation": "tanh",
"use_lstm": False,
"max_seq_len": 20,
"lstm_cell_size": 256,
"lstm_use_prev_action_reward": False,
},
}
eval_config = {
"evaluation_interval": None, # I think this means every x training_iterations
"evaluation_config": {
"explore": False,
"exploration_fraction": 0,
"exploration_final_eps": 0,
"evaluation_num_episodes": 10,
# "horizon": 100,
"env_config": {
"dummy_eval": True, # hack Used to check if we are in evaluation mode or training mode inside Ray callback on_episode_end() to be able to write eval stats
"transition_noise": 0
if "state_space_type" in env_config["env_config"]
and env_config["env_config"]["state_space_type"] == "discrete"
else tune.function(lambda a: a.normal(0, 0)),
"reward_noise": tune.function(lambda a: a.normal(0, 0)),
"action_loss_weight": 0.0,
},
},
}