From 0f3d97baabebcf4c13bd89a3f5b72ed7bf97b427 Mon Sep 17 00:00:00 2001 From: Arber Zela Date: Sun, 7 Feb 2021 17:04:09 +0100 Subject: [PATCH] added minimal implementation of Deep GPs --- .../benchmarks/nas_predictors/submit-all.sh | 22 +++-- naslib/predictors/gp/deep_gp.py | 92 +++++++++++++++++++ 2 files changed, 104 insertions(+), 10 deletions(-) create mode 100644 naslib/predictors/gp/deep_gp.py diff --git a/naslib/benchmarks/nas_predictors/submit-all.sh b/naslib/benchmarks/nas_predictors/submit-all.sh index a3d2fccea..81447e0cd 100755 --- a/naslib/benchmarks/nas_predictors/submit-all.sh +++ b/naslib/benchmarks/nas_predictors/submit-all.sh @@ -1,27 +1,29 @@ #!/bin/bash #nb101 -predictors101=(bananas feedforward gbdt gcn xgb ngb rf dngo \ - bohamiann bayes_lin_reg seminas nao gp sparse_gp var_sparse_gp) +#predictors101=(bananas feedforward gbdt gcn xgb ngb rf dngo \ + #bohamiann bayes_lin_reg seminas nao gp sparse_gp var_sparse_gp) #nb201 -predictors201=(bananas feedforward gbdt gcn bonas xgb ngb rf dngo \ - bohamiann bayes_lin_reg seminas nao gp sparse_gp var_sparse_gp) +#predictors201=(bananas feedforward gbdt gcn bonas xgb ngb rf dngo \ + #bohamiann bayes_lin_reg seminas nao gp sparse_gp var_sparse_gp) +predictors201=(ngb_hp omni) #nb301 #predictors301=(bananas feedforward gbdt bonas xgb ngb rf dngo \ # bohamiann bayes_lin_reg gp sparse_gp var_sparse_gp nao) -for predictor in ${predictors101[@]} -do - sbatch -J 101-${predictor} slurm_job-nb101.sh $predictor -done +#for predictor in ${predictors101[@]} +#do + #sbatch -J 101-${predictor} slurm_job-nb101.sh $predictor +#done for predictor in ${predictors201[@]} do #sbatch -J 201-${predictor} slurm_job-nb201-c10.sh $predictor - sbatch -J c100-201-${predictor} slurm_job-nb201-c100.sh $predictor - sbatch -J imnet-201-${predictor} slurm_job-nb201-imagenet.sh $predictor + #sbatch -J c100-201-${predictor} slurm_job-nb201-c100.sh $predictor + #sbatch -J imnet-201-${predictor} slurm_job-nb201-imagenet.sh $predictor + sbatch -J imnet-201-${predictor} slurm_job-imgnet.sh $predictor done #for predictor in ${predictors301[@]} diff --git a/naslib/predictors/gp/deep_gp.py b/naslib/predictors/gp/deep_gp.py new file mode 100644 index 000000000..7183e619d --- /dev/null +++ b/naslib/predictors/gp/deep_gp.py @@ -0,0 +1,92 @@ +import torch +import pyro.contrib.gp as gp +import pyro.distributions as dist +import numpy as np + +from naslib.predictors.gp_base import BaseGPModel +from naslib.utils.utils import AverageMeterGroup, TensorDatasetWithTrans + +device = torch.device('cpu') #NOTE: faster on CPU + +# TODO + +class DeepVarSparseGP(pyro.nn.PyroModule): + def __init__(self, X, y, Xu, mean_fn): + super(DeepVarSparseGP, self).__init__() + self.layer1 = gp.models.VariationalSparseGP( + X, + None, + gp.kernels.RBF(X.shape[1], variance=torch.tensor(5.).double(), + lengthscale=torch.tensor(10.).double()), + Xu=Xu, + likelihood=None, + mean_function=mean_fn, + latent_shape=torch.Size([10])) + + h = mean_fn(X).t() + hu = mean_fn(Xu).t() + self.layer2 = gp.models.VariationalSparseGP( + h, + y, + gp.kernels.RBF(10, variance=torch.tensor(5.).double(), + lengthscale=torch.tensor(10.).double()), + Xu=hu, + likelihood=gp.likelihoods.Gaussian(), + latent_shape=torch.Size([1])) + + def model(self, X, y): + self.layer1.set_data(X, None) + h_loc, h_var = self.layer1.model() + # approximate with MC sample + h = dist.Normal(h_loc, h_var.sqrt())() + self.layer2.set_data(h.t(), y) + self.layer2.model() + + def guide(self, X, y): + self.layer1.guide() + self.layer2.guide() + + # make predictions + def forward(self, X_new): + # because prediction is stochastic (due to Monte Carlo sample of hidden layer), + # we make 100 prediction and take the most common one + pred = [] + for _ in range(100): + h_loc, h_var = self.layer1(X_new) + h = dist.Normal(h_loc, h_var.sqrt())() + f_loc, f_var = self.layer2(h.t()) + pred.append(f_loc.argmax(dim=0)) + return torch.stack(pred).mode(dim=0)[0] + + +class DeepVarSparseGPPredictor(BaseGPModel): + + def get_dataset(self, encodings, labels=None): + if labels is None: + return torch.tensor(encodings).double() + else: + return (torch.tensor(encodings).double(), + torch.tensor((labels-self.mean)/self.std).double()) + X_tensor = torch.FloatTensor(_xtrain).to(device) + y_tensor = torch.FloatTensor(_ytrain).to(device) + + train_data = TensorDataset(X_tensor, y_tensor) + + def get_model(self, train_data, **kwargs): + deepgp = DeepVarSparseGP( + + def train(self, train_data, optimize_gp_hyper=False): + X_train, y_train = train_data + # initialize the kernel and model + pyro.clear_param_store() + kernel = self.kernel(input_dim=X_train.shape[1]) + Xu = torch.arange(10.) / 2.0 + Xu.unsqueeze_(-1) + Xu = Xu.expand(10, X_train.shape[1]).double() + likelihood = gp.likelihoods.Gaussian() + self.gpr = gp.models.VariationalSparseGP(X_train, y_train, kernel, + Xu=Xu, likelihood=likelihood, + whiten=True) + + return self.gpr +