From d171bfa8483f4130272df9f469fb821119b9f893 Mon Sep 17 00:00:00 2001 From: hagenw Date: Wed, 3 Jan 2024 13:55:02 +0000 Subject: [PATCH] deploy: 5c9d40cd13f5eabd863a1cdb416cf8a2a1d3bc60 --- .doctrees/datasets.doctree | Bin 7515 -> 17276 bytes .doctrees/datasets/air.doctree | Bin 0 -> 21817 bytes .../datasets/cough-speech-sneeze.doctree | Bin 0 -> 18525 bytes .doctrees/datasets/crema-d.doctree | Bin 0 -> 44060 bytes .doctrees/datasets/emodb.doctree | Bin 23397 -> 23545 bytes .doctrees/datasets/micirp.doctree | Bin 0 -> 15788 bytes .doctrees/datasets/musan.doctree | Bin 0 -> 25811 bytes .doctrees/datasets/vadtoolkit.doctree | Bin 0 -> 15301 bytes .doctrees/environment.pickle | Bin 19133 -> 33653 bytes _images/air.png | Bin 0 -> 377 bytes _images/cough-speech-sneeze.png | Bin 0 -> 3518 bytes _images/crema-d.png | Bin 0 -> 2568 bytes _images/emodb.png | Bin 0 -> 5482 bytes _images/micirp.png | Bin 0 -> 514 bytes _images/musan.png | Bin 0 -> 4950 bytes _images/vadtoolkit.png | Bin 0 -> 5803 bytes _sources/datasets.rst.txt | 6 + _sources/datasets/air.rst.txt | 64 +++ _sources/datasets/cough-speech-sneeze.rst.txt | 59 ++ _sources/datasets/crema-d.rst.txt | 96 ++++ _sources/datasets/emodb.rst.txt | 6 +- _sources/datasets/micirp.rst.txt | 58 ++ _sources/datasets/musan.rst.txt | 77 +++ _sources/datasets/vadtoolkit.rst.txt | 58 ++ _static/pygments.css | 1 + changelog.html | 4 +- contributing.html | 8 +- datasets.html | 56 +- datasets/air.html | 361 ++++++++++++ datasets/cough-speech-sneeze.html | 334 ++++++++++++ datasets/crema-d.html | 512 ++++++++++++++++++ datasets/emodb.html | 23 +- datasets/micirp.html | 330 +++++++++++ datasets/musan.html | 406 ++++++++++++++ datasets/vadtoolkit.html | 333 ++++++++++++ genindex.html | 4 +- index.html | 4 +- objects.inv | 7 +- search.html | 4 +- searchindex.js | 2 +- 40 files changed, 2779 insertions(+), 34 deletions(-) create mode 100644 .doctrees/datasets/air.doctree create mode 100644 .doctrees/datasets/cough-speech-sneeze.doctree create mode 100644 .doctrees/datasets/crema-d.doctree create mode 100644 .doctrees/datasets/micirp.doctree create mode 100644 .doctrees/datasets/musan.doctree create mode 100644 .doctrees/datasets/vadtoolkit.doctree create mode 100644 _images/air.png create mode 100644 _images/cough-speech-sneeze.png create mode 100644 _images/crema-d.png create mode 100644 _images/emodb.png create mode 100644 _images/micirp.png create mode 100644 _images/musan.png create mode 100644 _images/vadtoolkit.png create mode 100644 _sources/datasets/air.rst.txt create mode 100644 _sources/datasets/cough-speech-sneeze.rst.txt create mode 100644 _sources/datasets/crema-d.rst.txt create mode 100644 _sources/datasets/micirp.rst.txt create mode 100644 _sources/datasets/musan.rst.txt create mode 100644 _sources/datasets/vadtoolkit.rst.txt create mode 100644 datasets/air.html create mode 100644 datasets/cough-speech-sneeze.html create mode 100644 datasets/crema-d.html create mode 100644 datasets/micirp.html create mode 100644 datasets/musan.html create mode 100644 datasets/vadtoolkit.html diff --git a/.doctrees/datasets.doctree b/.doctrees/datasets.doctree index 9b05b5634c18b5b16c3bfa9372252971ffa46ea0..b944ee82c3d864dc7ba6ae3811b9761ad3e20dab 100644 GIT binary patch literal 17276 zcmds9dyE~|S@(M1>-G8-r%4*qV@F1tX7^sdXv5-G-Pn#}96Q0WvOr~K=iZsUGqdx` zJoXVa;8vvAa8!XhR8(rADguOrkbo*7;vx74R8^qz5~>OU{0|aBNT?E^2oS&T%$%9I zcOP?{)RKiI-@WI|H{bcr_dMS@=exH@fBv-#d&EC}APz0t-)QNE;Rl8pXMDm4x~XUS zN%r~d=}%{GWV3uS(%0i4jk;#W_W+`6*{%_pes&8FX9zyA-MCdC7)$i1XI8IUqkMm> z#WX`t^w><|h0GeimGLP(Ng}(GCK!|k8MciW2>E!|)#DhQ_&)0EUjA*uNW-ep(YvdW zxst=+i)|3y1^z7M%&B=b^N;Zq3dZ!w+@0+)?vK*2>w5c|BvDS6SuO|`W|Z* z;3so%>xA{8t0RKKNz7XBMS5t}3HhWXgz0O#?dl!ZWb1ZfF+DXp8q;GItgufdfuV1H zsx|d|5HVBlTCCv997`;dxjICbur)J^!2xE+EVhDmza_*wYqj}fI}MVRbKC_6vpHX% zJh(LpQJat<^ib+1lxtMbEJnqkBh;!5khg*C@^1X&Be}Y~#K$m38rc~?ZY4<=FSOf0 zXqu7j_gX!0DDAZDfciRZ!Szc-C!dJSIB?fY1BwQ=xA}O%!x|-J*Or;J`ScI!K09@G zj-5Gm=3Mm-bZL+aZGP&$1yZs5{@)!Wz}!^_7p&t#_lRzxi$VuS6H>66%yJunM8}d| z6r|ynM`S+Z-N21Qv%BTtjugN%1@5|SBvy8HicDeyWTYTrGk0XtIF%4Q@_rGFzh49+ z?-#-2bp+&(EK@hOvU8FTN5T4*e&NF4Fr&>akE|b%43&mM?hM8!tf*8s>kq*H-`maZ zh(PEJKZGDs^RL}_ErSOe!t1}=^!i%>`W?vlZAnt0TosA?5ZAhq9STP+9B-TV^;HD_ z4Uqj+(}<+xUoXh}W)pBTdE>6#HT@XDDraKZuE_dVko7N3Bh|_J=O$nUvI@suk|o!xS{g{6$#zBD6FG5@-5+tzQ3d#dzTI8nZ$W0i z*)-GN01!DSGR{t5Y_+sm>$m&$dUh8@Kenvf5j)>17buLI#`?18b)VWqtfcfE?^Pa1#FB(kDjn~ zEI^oN>Tw#G2D5#Eg20PgjK;NnJF#__>9$8tXxW4jS*w+=lHf8Q zM)L06{?$qw9E+sOoD~Iu)U4d;D!?lVaDMsPm7DCmT#f}HoTW%cT0zun7tS+o186%f z{|TbL&~kuO^WwwQ#Kb<`K&aI6JA`S8KczrOsr7F(;2zZa*A?KEm^OO4b*^Pi&9+ zU{G=@@8QjA+VAAkep_K0^=W@i0lu1cV_0w&1it(6>>pe125HZl$9mZ8;*W2dubX|I zew*hzdj4+_8*-aCvdw!n8`<_T6zAIw9FaD2k4A#c)FQ(+0}4V*oB7)Y+=Djr*9!0? zoxc!pyG4o%TY0eVo21R0 zcNGLuH?RLxfL9XW`Q-~2=AZkK`E#vPRlMj%CVa`7*$q4oF~2`(bT-=nZf_Sjj_fUs zWU@qCGmTm&=6n>;yDj#lK|D!Vm-w6vA}Z9CmT{6cqQ`w*vwtZ0{f)y_smG7 zF}*ZS=GcmBRj54c!2==m*t3r&61j0jf`$xdu; zAmh;~BQg`qx4U+-38-!mMQMnoCA#y$TQzL5%k~pw$9SWHa*%;IK>r#L4*NprCln6`YR%3 zYOzIj*^DSVqaYx`FpVPir%8fc1y}&Gt}s|doI#G3M{sO9z`P8kZOGwthD1&50Mc&V z#pf@x6(oCjhK)ejHcmmqC~(YrV1Ee7>ksTFNxsZ^>OKX?6yV7)8U^?XBxa}P%V15X zs@o+#VcNlVo)LJ+joYuAQLtmgK2H-WR<{M}ngNWLk-%;M-||e*eka8s`QMu{!Ulya5S14b8aaNS9gm)ssOJ<-WLlatfFNnz~*`2 z?G`qR_*llzt%0(K~0i&txJ%=Dhko17kbs%< zwt_(F*6}q3cqIWoSL{8$vUp$HkMps<;|}CEX-c^bOy@h0Ir5q%^!H=_f7vh}X%F8b z+)KQ@TevHa);gP#%+gT)ykVR{L-~dRyb_-g>rVA$hSaK@=-JVq zf0(A4>+-08tYpTE4v1~8VP;Z$&l0x&e5D$`)X~`nY=e9~sQ^!WJt5$loOv(6exW$? z#~~5Yi!hC8doc+pe^{d{17e?%{4{8{yY2jJj}Am}S;@n8BPA|kdjLm%Z69YBBGF-n zndFyFvEK0wr1RJlqeRADL*8FK%`YI70}nd$hm5>_XMT<3%bcqU0;yZ^3kvW`0{pHX zBpEcBT=i>bMx__vwNA`=rC|=z1U$m}UJsHw4TB6?hNb|o#MlP!{Zlk4=DeveTwU&; zQGiz>?*cM^+((#Wbitf%ruv5F2X>5IGwdpdK}`9E%qj3U!ULIp(8gLk<)Ep&qX16~e@npa7DQfMyvT0md|SZg)SMrpucmpdcs}aRl36$$G%9A{R#}_jHs1 z;0bL-BNMFs@0I$SM1P(0x<$}6sRo?M~G%4mhjz9Oal73VHUX45vB}(%0Rz=>KoV-&C z!_`%BUID%$Pt|$v3gt7d>ds|2!Zu`OR8at=%L=KoT~tb0OV$q) z*;BZ{KT{*&1fMFai;60qNvbD7)W<4dYX!s}6qyCx1m}5MpGjII4YEqhVznwYK2Eh2 zwkU6#z0Rj88=&$yy0e{qHoMNBEPJ-OGAAGoRuK6`4ADDN_KGtc(RZNi%Xhs70P~ED z20c;&Rsj*fCZD$bu8T@2u~S5af6k9XJDuC~@frH~N&5IKecYjspT>vDCp>+_FheTH z8A3sip4VVp=OaBg=wx^Km}MK-s?F~3{RRG_<1U}@QxEq*sibNTpAw~Xap1d~cxwvv zh!yi7O((=?Md{HY_yG^ittwf_YknQoa3QkuL6vk?2}`AwD58T_R%S439iuA6)0rs+ zTN9^FLhfr9WqD5lqo_D6=o@hy3BuDbXsm(>j})sGxZxbAFjwE$#nBd+a3PGtRCok;8 zZ5BE_Mv>*%tGb&)Wy|tAXznBy!gOCZh@d}{&>vI<;#wmb`|@El;9f;@s%WN>i`IUK zL!)&zJ;kc|Eq-_<2ofKs)3t8!X+PCiLK(CTtb9CDq?s6o6KZtP1Cxn??1Ooa>59|! zSfg4-O%{@3tm1{DvJ}&f%rJ-&O&pGASNHNMOLxoWC_iLw*x*v4CuuB!P-$qGowSGH zX4dt{2bTbW#gm7gNt`QmO_~mLdB*m`G|_Mb5g35V_+*-_%s)FH+xY%u|3l4;q9D>N zr1CCw5+cLgx=F?l1ZmQbWmI6v__2W}11Ow7gX-{^9B)N~eEZ4%2LmtjgEWU2jIzKY z7jw$^ewpHc;|AJ$VX*v2zC6@m-E*5fPQ+(iE%{d>WI9q5NW ziTpS4p}E8*1FF0auC{E#^bW?GI8)frEW2m9_zy)LaRbuv>DWW|ti6_s>m_&i5z)?@ znoFs%2zC5e*Fr@yE=fnZVL@i(do;Ygib~MCqM%&3`@-PwLQR6M?XN)C(gPeOp8(%C z0B3tR?!aJrZgy1qy_!Ke5J(Kz>Ly6AOq8bIQQLq$b5 zw9;M4J=a}6onsK_W4t|#^eRJapt@i3BQRX(pzRwrtRm6!0(eoKeh5TDrxG|)@D<^c zirx9)zFu<4ekZjKQx*9!>!kA)3Nk0f8_ti3*Y?-7L=d$f7m$QSkY?sRWXlpRpJlx# zheI%gu6UimEfr6IJ~Gf*LQnQ#oRp)Amk#&ghg*&kiUUUnaTQOnUVx{;s)_ta#`hK1 z@*x3)wQ*dd7yX|HH=S=|)>nt(H?tcsKV1BPAww83)QAQ~UEWN*8N*m*Zx#89LjPJR z>@yeB5N9T^YAPPXH*9$1s=!DX3+#kkT%9P(zuHaj+`IiH`PRMLUv5>YAJv9C9~s-a z&>384F97ar1DwzVosSmraEOnP>cFaadRa~R}bF2@rGg15ufHBCAn+@}%Wf1Y> ohZ^9vaKd>JZ*0SdA;|}t_r7x8!XZo_bkd#FOeU?uk({1b8V1A&C=C8C92)qyQVGAQoy??Q^LgP!-m3NtwWBp%!lx88-gO zI*6hgX+g~|!y4)y6%Sma4Y7_+i&jlpR4wsc9c;oc*S5XbngslI?_k;~+AZBH5Kfic z8GTvL8_Rjsm|Mt9TU(Z160-9%xkAR6&E|}}HD#GRaX54|< zYNH|znayP|#25xX0{Z&jNt&R0-~!Ij?+bB?dCI!XF%X*)F>*|BBoV1NVH$$!Lo1Pl c+kf)9Ok!ZrQ*l*ZcO|@4P@s~@oXNrVU+WKhVgLXD diff --git a/.doctrees/datasets/air.doctree b/.doctrees/datasets/air.doctree new file mode 100644 index 0000000000000000000000000000000000000000..db95b38c40143ef391eb5ccb51b35847f0d7011c GIT binary patch literal 21817 zcmeHPZH!#kS@wE&_RIGABZ+B9-QGHNw03r8)=q+x#Z7SRd~BR-O5%h9jmCHGJu~;t z-nn;jKX$yO5lK;st=<4_CRL>p8a2s3gsLL7v_wMCKL|uoMMxo(AM_6qQCdobgb-4B z-gEA`=g!zWb2eE6LT(lB+;iV^&htL+d%oX$o-Vymd2Ad1U%ET$IIe%bV%oMJ*evR$ z({^AbZRW?l=X-~r={?n(PiI228wE*dv0l0j5|-n7cF6qR6L>jC^0Dhhm8^it*bJLY zWp_&Hbfsd{OgCKWIa5#c(pfW(L${v9sE^7YckKverBjw?MiCP6yX2c~@oU;nI_jZr zTB{*z2pRlv?Or;LqI*d?6`M^G>^ZaPgy;IKcV;Y|?3h3r_ndKO%o$H7r5<-wouJLC zVdDENtagKNwQ8HO8L>Dj{0OYV6Kbi1QQS-F&P+NLF)MZhKWE7)Ig_N_JYJS!H}+WJ zm4HaE@pj@YJ5Th8#Akb)WMp4(4Ce@;bUw1;e0U|Po6a842y?zN6^40M$ z=w9|k3C#v}l)XS+{m)A{>C_qvBWeTOv8(D?S>V^8!}=&smb}kGcx{w$4525%N+Mxo z=1{OsojY2&wQ|fj;lyz#TB=r?ZtNuWiWRi0W@0lIx_+~Y)?BT7LA}~GUB7zj{*x>B z-SgnX_f^{Vo#$#bq0$VxK8AL|d~|&UBEFC*T;dh=a&^-z0T919OpkOz^iwaUlPEt4 z-Clb9J%Z(3K@S!F&aeu}8;UGHH%d5TnQiE7RAPW?J(!}?Z;JULwwdx=i}?}yXzB~$ zGV(d+(D_r8`X{6CNo96G__a~Oq|CR5x=i`pL(6BC!vq~*tRR&+Yxjuu_ZmCW`)MlyFATmfKs7w;4n7 zF}HSWVr<(s$7pTGpHUd4&38hfpNXV1P(!S4dIHeOf5@DGjhvxjC@g)sQFUVlH=y6^2cyRkkhXWU>*2Z4;{y z(eUM?V&hf8#>*PoNj7#v%a=6dNv#(z&xV>ajd#s8iH`qP&|VYJzO7MJ5!yF3%Qn7(lrQ|i+c^|wNe@2buQpvsGbWTH_l-$APhHziH z_4dWZMF}%|Qt*xlc=H<772zGykXP`w+y*msH#Th6!3r|#XbLGxxd()D_iKQa%IyQE z_h`tIa(8pNA>402`g0N={ZznA0j#D`Q4!cDHRKhrEoUA3Q*imhGFT-j)t(Wm{kjHJ zsoFK*^3xjfq}n={8^ZbZi-v8kN5xfL ziyE+sYCNwYuhiIb3zZtKr)DGBlTzxBgi_zo04bHa7M%Z~hCC_tH7+;AHsePZk4r1? z-wN7a3uu3(QB@JzUueiHXj{(rY{)u6&81}r8i^?oeWdq)GVRPQ=4`Y#&tq~1Ss zxgpF4=V+N$?j&_A@zwG_-z2KE8e!0^xIxtnW4B>iq*ArZ>Sm`?y)jRWs&#ClVXYU3 zj8*Sr*ikk;zKfg{O`A=Z**IuTj^}H^9R(z+OHBKcq0%&R3>z@B?S$5DD*4s)3Ax6- zA}Yzfh}OgiRK>+18E{NPUKw!9{d0yJJaU*Vn_VGAdFL_W&}c1cfR*04AM#}lc~b5O zmmA`p#<9g?x0H__D<3;b`}VmB%ZcyCI6KLg6Qc!{Qp-ZA`!qlnl{&2j9Vug3>@XRRWIIg8{K@4< z4r5do`%H!#8K!~bD02}ccUUBcFfr5Vkg^ZGc!s;90j>PGT^*{8EamZt-Lb{RI}Fpe0S){5kx_Sj6Vo@3 zD}EW?=I?%lSk6hyP}xbly-rX#jkZgL0kz=;85jXyy)dmHA!-B_9fskAMGHohSWq%j zEReSuvD;=GBw52)3p||1R&dM~!B}KUX0SEWOSsy^v5m?z7J2>x!=x%|v#=;gP`B%^ zq2F+uf-%aQ=LC9i%`9gDHNcs0j>vt9s>_{>8$06Gru4qzs5H(<Y=G@_x z(#)8b{)2{yy!=GC95l*i7`iZ#F@O5ulZT5Q50qU77VuXPChNa(Pp2!+s8VgJ~!Wa)wQ#9ayX7q+@U#qMymyR@UmtBP^m1n8^>&X0ct0 zR&J65aW|prmd`$hUIyN6hUf;U_o)Y{lwM)q$1Xd}6GoLOQMrN1nZf6!(6VBjv~Bcn z0d-Do*9vjQP0Uz<-*B7Rf{ttjIEak^7yzNN2I;C8_o8xogH{vbfZc5>E`^USpLrCZ zqCU0ylm=C~U3rtgwExa(Kbd%@amow>?6jEK$RJpx4Mw=B!dlgo!GeRyh1kIx`+krJBt4= zR&acIPRu6|n(4WSLd4;^ir8xX0o5W7Uq4Fomr;eOEjS)C@pWV$++Ij02wTrA#$~1x zn3^Fb!~+-6teoiF zc>>#0Zb0*A%pbkTh(haQ2T>E>1|7xr!8=b-WS$$~Z|6?ADYwC?PnA`JyUxV@s8V`CeM1EJTO8aRu3eP2VK^m<+3 z-MIHru8}#jN>Cu*6(E12QE3t6k2K`9K+XzZY2&*nNn|le0i7-JzI+;g1}BLd&GD$^ zl{DlP&@163_bTZ*Ou^fV@ki(jv$c8uD5o4+;;l zaq30e(+mB(re!+Ek)ER?s@VU8Q0#FHphd+V)sR<;>3Y;~IULkxGq;W9og?&pa%8C=*foUlYaaFbWAWKY!)f`);44Gon)ON@edkUY& zG5Q!W>#Oo-Wv|Z*d;K>3+0-OE&2#Wc_VFt<$-Z7rZeQXq@}4Hy|3}Mc-3({ypHyvT zq}*_Z{)VvW>zpwC8T$7$Q@B3uWD3Rg!dH<`62K|nR)}Q^s-$EQ%@9^DdIty_zl6~>l&OC zIsBf6JaPD4E;pn#k0Yo+x*-3ppuHoYy{%DI5!zcC@>4be>OG9y+8P)+)NncO1Rm+zPOOS70%^eDWb}PsGB!Q)Vzi~+4&Hc8{&c^29(nR z-rXA272WVI4f!GPM%i%#t@N^83G?H4D`?BcAs&>8*93>L1}8-hpVW{i4t*{+#Kc2- zndbzw&uLUugmytgUJKe|CeE{Kh->44TMI_rj2*FeP!ABdwt#apguK}Su3TAlWBLMp z!SE1qg+Sc}1fQ}P^VkK1a5Zpy0-{E??x4uWHayr0**l@>=vgfGGl^ z?5qG0Y6}#SiO^(D4RMH|Q-reN@)`c%F~3QK@&|sK$^xQ*d7N5^4>I|u0AsG~h5*Hq#lN6M~svFVbi>)CmP zna4GiTC1AnWKB|nH+AsIaFqD!y* zq+L5t;ikmg9AXAB%-?%|pPc zhtE0ES;zG9$5OhNop-@fY{p3>g-U73X7!|r>gKv8dIP@+2}HTJkunp9Xy>F(??O7~ z`kf@MAqG95m~))sCvl^Edl{c4^wJOZzpSw^48j^s2t5{pVS;MKy>vGMk^4(2@ltx} zfq^#zMYKLNy=_}MC(2bAWbP04zZl4z?jao_5aoa(kH;PCl6NbBahyt|+p$ZUUL!*4 zYxwe)!ry%hpB8|JNfFCTjJS3U0SgWHe9xIo=gcGyYAPw+PIsv7La279mb)B?fP@yOy`Eyu+!9z>*s=%MM|}eNz5zKNorKCv z(d_6xzSSO_qg`h<+UhzWIGERlkM00G;2diGD~&^kL=6-MC~BYx zEl~pn?C=^|H2fy%uA-Z9t#(;1oR!pvMk0ke11TqHDy9fIxC)%DT@Sq6bGhiX1Btox zOkasJvR0mHUtjs?*Ta|wlIsS`%HC{CXVF#R>nZApdg%_F5z)jLI$&HxT!=`29z?bl z(Al0Di=OR0LfwNIq9=eg=_(+q7;$uS(Rzf|E>qRenO)teKE6wDI-Q6w%kYsCeSHEI z4B<-#8E?s;*tUc66NdE2DDfXY{kzEU!>3=Ys2Cs~hW0E#kKQ>jTAvvq$GyW$OW80w zmQL`~gLGnf<=%&BEED&4qHoQv#-ur2>uHoa5DJQGB+YbR-pfm}h{D!05Fa>c$-h_3 zVxy|*;rrp)A+>kO80U&UP{fP^N2GG*HAuzFBUGe`(-O^EN61}5LhH-OaTyB6Bn71M Wj$CElh0NOYomw{j(3u`C5d3cdSJt=y literal 0 HcmV?d00001 diff --git a/.doctrees/datasets/cough-speech-sneeze.doctree b/.doctrees/datasets/cough-speech-sneeze.doctree new file mode 100644 index 0000000000000000000000000000000000000000..614809d2285e5cab3ad45798b4ac613facbd8428 GIT binary patch literal 18525 zcmeHPeQX@Zbr;1iks_%tOSTg$UelIArQ{t+QHspSLKI4tWZJYUDXsH|d)m95yWQp9 z?s-2*v4LwPh!LyU0ztiQ&?XL=wn1AIEdsP?VYp427DZ45Es7RS0{>IgMbQEU3ZrO> zvSv_vX#Kw{PC;jltJ1U)aI_#e0I5X}Q-+x?#AU z!Ga{-Wq7ry$=on`Ejjw>EAEOX3}%sF{{y_{>dSz>gC|A6iaON;?<| zb-%$>b8|3$pj6T-H7{zIGeL{78a`acewHmJ=I{$iJgSGGZ&jlZB8pHoYb*`;qH1zr61Gt7StE^?-#z?u%E;l{$=C@`Esms^&;M9I#qw zd2S|EbI=?j?x*nMU}%L7%l*`u1tJIaz*Tmg#M_zZm4r_kx}P>R^TWiI`N)d-@JdwG z&Akw>xgWjUhrdJkdjNkQcp-_*51CUSKO)G@N%P_50gihF^3fZ<-ZJy>YD+%TLuP2z z4eg3{rfK;W=q%lxM)6YA&}$}J3s$X-X>CPYikeN!4W_lT+6CPWSJ|}ow06leZQao^ z3utp*TV|LAG_IME<1l|(`}j|D-7w4X`!bf2+G&X4RB@>-nvZa44N2*7sSSpDwQWMh zTx0Tv!iMift(-8G8VuJw2kWDD%a2>m8`h%dtXoECCd=bAiB|#RCjsFTV(CgHE7HNU zf6|xlfwZ#f85_5NA%*Stz4eYi3}P+$x3)1qD)Gd_Ys?R5A#iOjtFoGcPl1VzUg|0Z zKMLZtUc@1YUW8a82_u~k1?$SS`O<7@PCI3WVJlcHmm5}SM%7ZyYnJuMV9dANM!CZh zFIOF}T5dv<%S#u|teijh%yZ{UP2=>nN=2|Zg8h@#Nx!jw$~_em^NXnf2Km5A#(tbu z0P-(&<0~Ezo7o%j5c-dND~Zo<6L`KKBmnUFZU9JI^0V*@y@=CUU|VV<_2^+(2UFE* zpQ@=Yb2sc*HRcA`*lB}=O3892Q}dhX^&7qLNoIC~_>X%L6EkmiRjE_gmX>Bd{>hnz z(yUUe8f~1`8iQUnJvS(Mexsbi4a(JxGKkAccV5qg@V%6`k*v?0#^fr2>YZ-TrPlm| z`PFz@s!I`2nNEDCTlaaLATj=3FXB{;+pZJRkf&mk#Y`jYfxaC(OwHbjk6sw1UW|dE z|LsLg4E?a1UOfK|40%@g5?U1=g`s(_7Me_JMOCN*)B|O&u3a&8_-1+Qx~NUI+uG9f zCTn{IHJQC#K|xwv`k~F{K8=dh>Ym5foaIGnes=C7C2i@5i&7q!cJ%Q7_K z-vPEmj^0dA(;cQ&tp+F5^xBJ&6)iX&rp_!~ym+*vT|9U0+_ctem9%3Ev+v$`?byQck|vjf;aPlL&cPte z%|214HYF~Slk*=rc4B^hlJ7KAX8HLq{0MXT?u{?qo6Wm7n`(c2{`DVWmhP>%ySU;K z?7$E59oWoFU3|3gI+OD=5)8rLbp(XYPRh%86q!0M?6Nj^0KI;@iifh-z&hKl*S%#`8x&Z ziLKx2EDiOb*uSo?Np$?Xg7z%|?Jo)pm526c1?UyDZI}3P&D0U(%2rrbR*e0#VCLf&%xB0QbEDgXO`! zU4UMJ+jfbM`mE(4c;X?3o^D0?D#hM^3-*3c0Ip>3AY}Ue0`$b*zjL}SvVZv+MTKTW z#7adsvq*W#uKQl2WO-%X53M?)FJP&>&Z>H=Rem(9M932-2>~mIK4azc3}~vzZy5?L+Sg%q71g$dwQVE z$6INF#|qG^3Ep=79pMTQn9Pvso2yaU`y|O!vp-q@tkm8^pg&oFo|rq%>AGm|{qwW) z3p2BGGqdw_f|*UJ1ij_&iiN9!h06sX7N5j_o}+(9u8md(eqbBgp#`>3plcb{cJ4adWIOW#(fWcpbl)6dYy?HpU% zFJ~?IS?mXaD0_H#{&%sLEp^B}&_rZg!;wCPqs^$Py9i20t`TTgO)KExZ2ECs4>ZWg zL7-Wjc%Su49fI=+Du8DpTKV~09;^VR`kF@M&8BLN%)w4deQJ6(7`P8awtM28FHo!-;jdz$;>J{MD7 z)IF8Fx0(LGII2zH=6yc1`XasU$8&`A%Rtf1V^T**UnI)(2#K(F^UCsm{bBGbJ)C?S zJksP`D_!RFZLZFx_&wV0xh<2U)WvlhK6jl$m0653D=U}nEt&((ev>|K%Vqn+tOa-3 zw7km}PcKsBVey*umC7f~^%Io^R;`#XR_0EY7UpK=o+zE1D{)D-+zfA*c_P088kZ+iu z=1I^?sX!XYzq6WjIH%Z&A4eW7uUuTzN~KQE#-*0q7!?xP>HsJ1=ec6{b9uDq<5Fv+ z{T}!Th_8PXd`X;X^5YSXw;yT3d9*)ss&)Dlo~b#i)W>J(^oYum&LSP;yiDiw?LR=*r5+HdbR*P zg&m$2vfMgNcHrtpE3*fppukxIT%*8Xd2mJn`az=7XrB-X_>5n81}Tb`Piz{PYU>V1@N~E z0LcUY+XD0ocyERKa)JI3Doi)it^1SF!hYIe5G}MH>Ckb!2hl8kDN`1nttmbR)Ah&xH^l@8uZ+F&$ z+r8s=%kDiQ?ajj&@DAVe)>1C2LP_S=gk*lTH?lUn_eKGFlFYAgx-NFFKL~w^kAGLt z-W1UOsK8M9N&ABW^o5{3Dxa07<)H(<(2Y%gZXvF4O6Y}X6>EPZSo`Y&Q1h&Py8yjn zt+zgYf%kV?IZX`_}^W#NEFL)LZXX1EEFtTSde}6qM+Phq!4Q z#K-2K##S*2dUn`ZfW8a3t-=sw##FPSGuEAsJQ%TkY)yBI2lG$?;gh@4Zs6P9mEj9k6&p{BMbvE5=qjFGX`CJ zevnY zAB6poUy`7}qgElJmMH8N!&K1sDvG0NG4dUh#zU`Gq08g+E9_?&@2`7a=z1Z`RYOkW zbaC5_nw9I6nM{(Kz{YL0aGxEy>24UHvk!_I=D@i`O=TT-M=SF3I>t&Hq_^3@Hl_La zVa34>CkIFG@u;agS#dDl$F5tDQmBVfAc+R!L4#GJ28Nqh*L@dK0tIdpHc>MY`Uo%) zJISl@gyrHUR0U_no&hR^prWuob8;rI@cp6oA1loFJ->nsU<22#Az^}A3zK+{7lrM; z4Dw!*`0%D*Hg#bKP@Q-}^s6w))(^G+u&Hspmv{&uC=()bc+hNIX30b127+ii@jMY9 z@Nt9EH!8^5q(g1DW5$D=cx}3|`eryoc97x^BR)r)5>GfJKH^L2wUMd$CHqfK~D>xt3skt&kBcv$fhE!I-&mEet04c*PFkXFYJ$Rs6H z2c_0VXnHQc$(F<#4+L5Yn!^K8rA*dvU|#~B8^*R ze#v5CosWU_TBeX^848D|H!K2vEqzyf7%J7QWUDLNa4I4ydNV%6aUpAhAy>?Ep}8a_ z1FF0mA?2)yrMEZOKz_ybifJ`W-0m}>r~{5iIzEPbhFDQAMp(cBS{~qKQLH!~-BIN4 zh&YUFcOb_}fmm3WGunG9XuXPS`8WCdEcojf(glALYJ!`JZXJ^?cYyu0Ct&Z}M8`w( z7)%$-j@~h`nm{?4Rc2tVZUBPG@Mesg@xdCXRx1qG#+?e@y@9YWz31Z9cwhRO2xz5K z7dzL@cue%byARO1pSf!Z3{bpF>?2sX&_N49d#sAEBJO8$ZubEsbSlKfNXXTo_hcZV zzrU?kyh{Vs=&ha==uSDkhJ*HbT&f<^gLs&J6m?U=KpeJzA2DqEYxLhZp8xDo`fnEu zsy#^meGFTH{UrGh@d!1hM=Ab_58nJ$-gPK9j{qXR$?C;SDZ|fiXx*w7uIk>s6^p_p+D7Gs2;It7X@$NJ?2t2?pBB&|qU&Gwk zpN4#v`+`@J%d|b{K6V1cH|SCq4U9viiC`nZYL~Ujbf&K#QHfIViL(*zCD5Z24w>j1 zvf_mBx3tJAm0@C z$a2rpz<)V@;sP|^r~N=mw4*FFWMshu(XuVl*eseK^kA7BEfUT5d(hn?6#G52=pYh$ cCkPh_iC}jo0>0&p8f1i1dqvSQyf5Sb04Lf7$^ZZW literal 0 HcmV?d00001 diff --git a/.doctrees/datasets/crema-d.doctree b/.doctrees/datasets/crema-d.doctree new file mode 100644 index 0000000000000000000000000000000000000000..0b9b0126cfefb64270bab772082323a373bccf14 GIT binary patch literal 44060 zcmeHQ3y>T~dDiJ(x|2>XOO`EJ_E@rvY@c@Tf55sL5-Cd3Xn6bZ!Ggh#*-0vJLS39lk{^8ej4 z)4iwN*?(_uB~fKnX?LgR>*??N`tP2e?zx#eJMUlefjR7-zsM~brgb8rYMNzhx?A?= zX?CVm&@HcgU-_!nluwq|`#p|2>DnbHqnG_TfXEnTUUPJ-d=z#rM7(F_-9&JJE>Cr` zy2x&H`U?^XC6#gXg1SK)E*srP%YLuwd5)Pbc~B;n(Qaxk9MA90nS~jkKCM?&#wj13yd+^YO!%OMbVfW)WOAdi{>PY3b$BHovQ=0%Naiv>RYgk8urtzDP*TEiy>cmS^!VMbp7BiEiX1aKjV@HV z9(HzmrkB^HU4kk?0MT(sKY@0M9e0VAi#${urv}!B{yNsofa~b@< z5dL2T|5qL@myAn|^#EVT;l>){ve6F4uLrcNSw}4zGL5@-IJ)ZTnv$MUZnR62x~c3? z?S5saI$>(co`kZ)wu`#cuk1H7hN|b4(S$Opm%M^%S^df_rL=A-I}*yC5Kns%odBH`vz8!4bMt6PK zxSYA&6}rz{@ATAkMaA=&fC}&OvW{IUN|hnPr8{Hi-J+g3V`t5JhxTaaCr!;W%A-4nXwVtWZ{ zKiU>Ga0h6Zsu%5{@4Wz?s0a1{bUV0G3TXt@A!zM6HkjC$7*Mtuo>z2-lgX^<8Krb0 zV;7QYNz--5w6e*d^(WJLJDn`3rj^`raUHcB~Nffm0$5JUSs|UJGeO!l52fEF$ zD}}naHxS*)3M)sF{U8BozAa9R-@*H~2mLNMe#tS*{`E}|X5B^^3Vmx_p%@ji+kadS z9JsC53_3ib4aMf6N{W?LvOcDcy7Oj6w_NDkdB+iLM?M;l!ckAx;}?pV58zMN1EZKv z#)eMz*nuK+hdbfS0o`VyU|X&drKI6(qU__mmGuX9ruSW?ObmvB25|=6tc52X2sF%@ zu$^o&(CH>^EuBvSIw?Zy{>ZPV0~@Z53ZoY%>kkiP+=n(R&# z$6t@*B*!sU{nzS&gQ}nPI1a}jLH&iBQ55Go+vdzMlw3P})#Dh(@&drmA>dKdbFtw( zSfxYRVdztqJ_XTTgh88gFk@oRmfUg6uKgn$cJlTZ1!nFNq|ck^3=S6A0DZKQyR?p` zs3T;hVilJm*UCD%gn$P{ zx$O)W)9LnN$D}(MQ_Y9{uAC%@9_2)DBNQwXJwm_>qO{%}C#{{CGu*Klz4+(e__I-wn@w{y?bR2#OT65>Ju5b=~QBR9V z>$!$#&AQ)xu39L1BDi}Aj5@VbG4fskgf zCFpJC^fnWU3qu3x4H58y-mKR_PulbpO)tV_a?pWFDMH-KxwyjwvZ1)8Anp(WkK%4- zxESx}4qg}X!=Hj!krT5B1 z#I#s67naD4J9ai<+DX;%%yBh?l9H2pS}hinYokOrnTEMSS5JD5t|#~CFww5&+2nd~ z=x|Q0$_z(td3$srIbUKUI!3=D8Dy=19C2fVU|u43DIWPDUk$HyTP7=v7t{D&948EeumBMMUWc`l#eyOduOZ>4kvbM!=)Etqd0vr7JcLY#iD! zFt}l0BQ9k`)fkelxnD>)!X?~Fpd?E;NWcpTr22^m|`D38v?P&xqU zeQ_-TL4N=sX~hUun2al;>BV3X>#8uppTARgGmcr5&*&9t!qZdS)7RryBkNbWyP_Oy zQDqe{istB#yb}iU!IaamvIDvmZ3AD))0ABW8)>O|Wk0M(7HkcEjbNALvUyop(Nlt) zis>pUobq9^7E|qUWpn?~&_=~}Ojx;sY?-`SbQS2_3d+_&h4pK0LQxJGI?Uwqos%%L z&k;jgl!BVq71h#|p=*_KSmnemUUFLZCUuw@_6$gZ83rtD;{d~M9#RyTSi!3TR+6er zsE(<7Q;2cY41n>Fx@TBs#`H|sR@RSMDp`yXE!#^Lht zvB80X!6bg94vp+h-8gbn>d27AhLocjUr z#YO1cQ=I>_+E~YUwZjc5GOOL&ircrriQlxLM}^gAI0q`Oleu9{xL8}u?KRuC;nJ>Y z!*_9eIAWNs!$rZ!s`4jwYQhgEKK%~EE9A?5&xt~Q82WO&?Pgxlfpd>Dq2pjO_apR% z-*a$fMV*O}f#0nMO+++5DJiDuVZg^Uy{u;*uUO%II9F}3s9|GSlf&!tCncOGQI}69yJ?$8HyM>{vniScA>;@Ld z=k5*G;*vi86xFhuSIbVOIsPu9uzPO<5qT|q1G3u}Rh9Gy8le>*j zm`v^n0Z$^=y~ECz3RV==(YB!Iaf%M1NSUHdzzd3^{f6gE`R*>bUm|yX{p01fa;iai zAD`Z48i=M#bv~$0WT21E!uVKs6L4xb9bJR(Xi=mdOt|ECB7{7_ zg?y1fOcwGO0WXBqkJ)?K@fx|!=dw_EmAHe!LbO&`7bm=UmV5DIf;QQU9}@8B#rL_! z+Wnshv|tD*5(LS)o$TB>2fn6{`f3f@uz5T;TO{McDxe()5kfBJLRK^=WElZ3+-^nW zMNO_+ysFP!Fh=4~o1{to|UhgJOa*R-@OmdWfCy|T`tcGGQ z%Z2C!VzQ7l0WXBKBK9t<+UrGU*;>0roV|f7znh>$R{mN79+khE;hK%JcX5&r5DJw^ z{uu#JBKgM9NB@s;@ z=N0u)g7I=ieVBk371fG%bVXRh6@Bd^m)hW~ zk>S$w4asapgkDl3LMLpT3JWZW2MHI}au+Ud(1lA0c&zMI4A*Q#4s()Q2!+ZKxru-$ zksO43Jn@g2G}Fz(ibg-I)2Og%z*05*g_!I1D;E516HM6lE3T?xN>~ju$SLaPW-j{x zL53`Q9|139w<1DURf$ko;n(HM{#cCg;CAkTP0%EJkSE~L1C!yJjn7k@hL^QpdSJZ<9Ea2LUfCsue9NJj2OzX<>`1J~U|{hw$e#_vbSN zy|O=lN5G>$pJ2FVTie$;$$upjDwF&d0-i)NbhgFglb>;!&k|_MGJizC3z@Bm)yrdg z|3t+gg@6>X+1Jg+YxCi&k@4C*0v`S7WVmKy^9oLK4WUrE(k>(5NhD`5-UvGE8RQgo zb3K>6l^{cweH{TWWVa$#s|}M`zba1@$Ag3mw{aI-x9vylQ!!_I9KF3LZmQbin@>2vniR4)ttvtnLK1rZ0%ls+=zcOZMR<1U&k11H&~Nqp#p3|Bz6qO!6=RPa^rk zh(%oKR#}D;(d6=qx}9LWTu~MQFDj}Pt?HWCR#kn-(oi1Z(S6*bKOtzAJ$f?%j~=~= z;hJr6@8=}{l2E8j@*x7AMDi?+SsvvwPZMa%GCxhg3z@Bm*R}ESS}|xLVMTm?k9+d( z1dXyM-y-1AlW#Cwv+?;GPV!fTLS>TwO~8{#o}*FAq8>I_>w~XG25Y?pypY|Bc&#?i zS19F!KeUopg$PIyt4Z$127*3046Y{N(T^7~T(hydo0Hs0C{!jnLco(qT47&tcJ5dS z7e3E+u_7vta>H*U7$_Tlgn$=@x1yCK!on$#1#rUlU}=vj2yG7qVLsx7DWe zr2bZ30ir-fv|ilH#%U|ytC4ZqG6EhQS;BD5M(Y44nIIG@SKBoNJc;Dl9v}qMhG)B2 z5fyv5;kyV1%7(v`fER|hqMZ!H_wTh=bsEno+{$vdbb@->tuz6TZlxHm**5elPV$ck zg~}wS2zV07votcfpUb?DKwFmiRsvqgY(?a*Cq!<=(1e~rMC!-6J0B&emEHL;0gvu{ zkl~t*)PLe6zeFfhCiyr4Pa=7a#wOqAvcE@=A@}dSwE+^oz;_8w-+rxx&J~|oXh9?OI$}OdzfER|h zqNNPh>Ep4bRG&AQK~B+%ZsvX+An2F<+DE{nUwav@*;Zt5lH-IzWs(^Jo<#C2jZa?9 zWu7F^mSw(@fEO}b5xb#3@?G82d-=*cW*f*MV)fnJp9cwgWq;m5z@tBJXSil#^=~=J zj}Z!$N&XE1Pa=7aMkrtAvY#NxkY)cP0WV~?B6e3)>38KRlbZWQT>gw}f0m#{*8U>` z9<~1m!!;Y19ShiSX)b&xVzwd8M(O)fJ_pe@VP z2zVj06){@vjzTu^S22B32PI`S6FeVY_iP$@0JNww+u^qk|89dG*;6+8XqAgunt1VR@lu+TKovq`} ztR*OwLs%i;(V5i@*K9l6#z_tn3YAH2Cg4dV&(f&mAeVVFfwnAjjDQz1TM?zz9vumf z;eZLhieX7Tn21W3J8?Tfne2o`z@rn#8Lru=d?P1$icqLb@@@j2MDiSsOWwm}zndUK zmi+($FJ!kOO6$BN=TWZfG=ZnA>(c~0>iQ(ZH5+qJbCO>t6e^Sa8UartxfEVRpdQC( z@MLVqDHY+>5_;Asb)x z!B->Wi(UdA)pavmv$1m}CwT>-P`L^&C*Wx$DNf$NNnTGVR3^EFfEOgGaT1S%7r6va zAFquI-{sPdj|qo&x#X5tdCIH5D17<5yCG{%=vL)x0Wd4P;U!o3XmxnWizpV}M$aGU zE}j!FQeqwxkB?`Mc}#rw!HfY9c#EE*6>W>ipWyZ7;a5WsioZR|!5$QUs8tV&UmQN5 z{caW_GkQ?`3&%JLZ!ZXgv^+Y^kK8Z>b>#!f8+lH2&8OXeg~!&HS;f(xcK;;;9{YmF zc|g>D+H>blPkP*auq8tOhn(II2*t@=)%OT^6212Q;z7pjx1jbMr}jHSQ8KmP5b#85 z>WOe%(7qpj3u?<2u~X$z_-f=-xrl%#QR~{LrgeC|R&X{CHwD3KIKit31ivz&A7b5XnNIUzmvTTuHpr}j-k zQ8Kls3HTUl^+KwKq8Vn3ULNSbnEnh{%T7g)C_dwfuuUIFR6y5ac1r7juSQO3Z3KMN z70`<2vLu|8j@%6+v&tS}QSVwIJ^%(4)-hj5AE$&;FY}av3D1I z9E4wo5AF?{Ni&BKt?LnP`@;kqW!v9Nz{l7wjA(!6f%`&5?6;uyIZo}fgra0>pCaG| zwN^C6?qGE=)D>+DZQteEzC++DYx^bvkJ_GQxVVN0qq&e?JN_2be$A=g|9}20ILZ2mlOkYbsb>1nKgZjQ_B;IlBt;ldRU|C`LP9IcMwO9e%H)kLwQJaiWz++x(056Gc7ar9^5fJ(aT5f?hsZ&V303 zcY*7#sERT*z!<9mAkz%Vg>R+yyIi~Ezzgb)HOQ#VUzjO5K)_1{>0|zaFeMM~*(#6u zFy{6=(}FcBe~D&iN}ic_6XTAJcgkpGzw1^tUxM2P?kfkY!t2NUo~&-^j_TPCKoJk=|?A*j>u)bw;I3&&eHsX7+81PDi03y{(ScSUA& zlv6(CFEp)U$xA^^+Zv$Ceox68->_waYr^kKDtD%I$FZH10k1vG>kc@KR5M=LUu2iO z%A<6$qm=#C)Amd|MDCXmI{rd_T)`pCeM#kxX_@`SsKEuJ46rB%FLS#TO@bYo+p(|rs;~*0pF|||?V%vmsWS75CEqQiIB>8h8 zg#A9PR4AsRkON~`0?x}hmI`aRWBwwR0`6KaR=-Fpx_U{oQzr@-OpBqF*sh+EbFwIb z_BCO`tGQWlE=s}sy#Vfd;O0C?->`0A z2<%wsjAy1D9#h2OuM7_ltxUy;gB$h|rtXciGN8RC4X==g!g}DYA!r1eXOu_h`KuwM z3aO}dMIBDcEn)@V<6p>lnUWLIi&gJ1h1Zqd# z#u#7V7F1|ax0l#U5>NRTux-AX%G((=@Njj;P=PtrFmG5;XV~|oAouZ75y&hA9iHid zQM|$517TukOluq}JM00LVxItg-!zUc^osAfK;YMKMD6ofiHW#r{yg4~K*NO? zG%d}9R^g>Q)yeA6FG0jC0g@0?9(1H|Oidqmq2u zOjREYnOT#<(B>)F8H6})lbphFU>*cpA#LZQ$Ys!F(-I?ePsI^?!ctkLr4`4Ae%So_l_X_J}@%Ze!-kMqiycp2J6Z zBHY1tA37I#rkJh*qYEYK{rQ$# OJi!L%BDAQKPW(TU%LI-9 literal 0 HcmV?d00001 diff --git a/.doctrees/datasets/emodb.doctree b/.doctrees/datasets/emodb.doctree index e14eb5942b4b5c2c36cec85dda7e4c2c7dd1d19b..d240bf895ed1eb7d9f2c0480e36aaa4b415eef19 100644 GIT binary patch delta 2432 zcmZ{mdu&rx7{GUKZ`*U)1$iuE57%}Z-8$y_+URIEb!MYgY?QHjh4$)XX)1XMzTM57pdK#0c2ABsVR2|)}o8p*up`)Jo<{O7xm-|zdr zbI(2Zap4I2>nKyV8Fyb9RZpsh8n+KlsnL9Wn|LY_OFWivMU8Qz&n-_x9nn27%5I09 zWFM0i8QIj;s}Ca1W+$|t3|U#deNmhCmA(^o zXd`mNqK0U3v?OX@;)H9C*OiL~7|yl9k>bkiUnD112A7Kmtz5-ClfHp7%IqAMUc?~J zO%|zyk4qxTOcjP}f>w*(EV@FM=-ASnI)>5GPSHf=8dMmqcPk52IFnnZ%u``7+YY;D z6^Z+aw-aBL!Trus(M$Xh;yuXOJYfD(SmRQakUogqVxi3?Z6@%tF7YxQyhu6EQ_TeR zoTzk)G2)}d-_GC#vzLfZiGM=;BkGw*^&HgCH+x}^>p^je%wNg8K$Xrl1#iN1vNg>?Fx`(FMI(L+cNVEz8|`hR;$`8jgV zqVok-I8F8UdW-lt(ThlbPN&D0%omCY=P=78R}i~_4Nl7jY*3%7ayC!evr;6e;1G^VdCr9EI&Q*yVhq^Do5V+m?@!|ncq33CP7*&s{CEamP+K6rA^tV- zb7|ZT-_{n3tHiGmAJ5=h=Q_FBjI(BhY4skaz{2`+79R?hD+4C^z*v$GOxOgXY$5Cp z7IH6TxG|#=Gh8q=RL2(+XhN{)CTOb*Fc;hs6_*)Uu#7q3V6zW?sH@=5Q0@Tc?vT04 zb~8@WK)s#6N^~F6y;ym>tVxay9+>A~ClDT=ge;{bTlwLYJ7@7fsMzo5U%^)6)T&{A zk+5)_560Z*SCUsKQ zE-Mr*q%0<-5f$YU4oq>%)mCEE^lxZ*C@5cL)0D;XF)e{zew77aN81V(gzwt6ve?+F zy|> zOssxanPJs0VV3I9rdr|0`|PYASbL2!#R|3URqAb4{r6%xKM%IGH!8lQ>6SY-$nKcV OD!|@RDDC==ihltSe7_k0 delta 2358 zcmaKuYiv|S6vvsnyWN>B29;W9%X05_-z~IVTDD!JlBN`Gt9?iz*hUdzlbf5gmPZL% z5GwJ3G!Q(k@kO9kzdMx0M!^z_)fYM_&71=eU3H5g{I zV5gIhbUK={?DOW9RKP?|E}Y59#G8?coT*OO;dw_pWrLyY*-)2XIQ1vnlqsgi%s2IV zAN1z$&b+Ax4C}hQKwK-x3dx(RYK)n-Nnse;ysKCSFy8`~tJ|Dywn&Y-t(Jo|zNdJZ z9X;m3u&jsNE*B)bRHRyo+E@5*To>pq_t5@G!zpCZWo(6?zLJP!L|pPm|;%N=~38 zj>eY>{DEL13CP&#z(qTN6&5oMB85Q~hlKH~JV@A&I3KYN_e2c%xya8SAh-}=EDfp| zFC(}VVUvQI?tn;DU~sN`7O`#Bc3f~(@P z`M{QB!`%=0MGN6a2{)#26h+i#!^b%;m|wkJY$kaR$v39SwfP+1ajNpc#U8PbwC|I4 zh_r*r%wG^bO87_$N0|~)OPNdsx@VMDqfTy)_bOxnSGUrR?0+KKTK+_NwNRYA&iKU!E1to6elIK){xU{4U}OVEHDE+Tw|TGn1#z2xt3##nQ-)yw+p^&oooL``od7oOvq|m%#4KE bW>{|7kJx8sN<7>;-O1#~!;&#Sw1xi#6>F%w diff --git a/.doctrees/datasets/micirp.doctree b/.doctrees/datasets/micirp.doctree new file mode 100644 index 0000000000000000000000000000000000000000..4d7c488c680719563bef249ccd6313d55bf74cf0 GIT binary patch literal 15788 zcmeHOYiu3Ibr!{!_z?B*BX%4$Yo&52nY@>x<=ACqr4l8}id@Q-*fweHUhUnTdv}+6 zcW?GVijECCE!X^XXc!lmq%a!+7o-kfBZn)b==@a&9vzcruWX`ZN|T5200hlMU6PILXqcGr`AWW+iSI6zXzDoiUPe79U3wH}P5N zQvsAHKrph(Zjh>q@>epUb1<264Ce&Fbsk)CKE9GRP3Is~kLXTWD^MLRRas;R@t;8TIGawUahW6$*EMy(SQMhr- z52LWvXnP&!XA~ShzRseUtWMZbUBBxd_&j9T9Aq_0?~@>2A4Hsh=yT9Ys$k^ZpG~%neEd<<8AMFN{7GNKId^?|dH&pI=dYceKUKCLizX^}oxy-QVG!5Cs9nzy z$Mxpsd~DW1U)M(SdZCJc$R(UEb1qp+Z#fWtub&voX#UxGi`SL4R76*p$lvvAp==_g z)xRD@oNIO0O+iN+a)Et&j_|nc*E7AXG7D2>#S(8EV}>pjNqWp$hNb3iP=) zcD;K?)7Wem<3E2Zl;B+;wHe-W1%#?|_k;dtE6_tC?+HQIXM&ofq0S=9HGMTlm5Vgc zXC=^IuF!B9=r2{E*Fbk&`xCwyv{Q6ItfVWIXyIOv!aZLBtP*Yp+TEx?Pr@aFZd)(( zTVLvGyRMV5Rv2|mtj^_VRj*nbZ%J)@y@GT~8wVien-%CutT%404ZW-x-Z0k{I`OQb zy(6K0w?b28Xy2(ouc7U_#>Xwk#FnQRVa2-^?4P7y->U#r33d>={QC;@B-q~wx@{Jy zbv|@bX&g@))(<7D|ESPR8P>m5px3Z=UElj-v(v?9v~5J#cPYWPlxiXG+AHSZL--lw zGnJ5spwpQO^d#hzpzEXi=~JgpE-cI$rygHeSWswt3pLmi66|b+#>-%jRiM{kcfCg@ znr>p)tcxvQKJAoBv~Zu6!aY?1tP<`pG<=}~JqdSC(Dmtwy^E(5K6=!^ObM(}p`kLc zXDiTaV7sn$1adF{O8Zt_phf$F6z!!7P?czRL68oJv7>KeZ4lx-?UJFEQR`` z3LuqGcSGmju0T&hy)Eea^v&K+eo}P;J!)WoC4v2Ag@($&{-OfC2Da+nty)2Vr_C~Vi< zu#Q-w+cGT@slLIQX181aL{W%6J7Qijt0xg-^@|j6G<^|i%~|I=yIbt%y|Lk9KQ~nZ zqiulq6ho?gsL{`V=6ibY0C9ecUsv1u4@)W)2k=G)04r}7sT+qX(Ccp8bt|0^-5xv4 zRz_MX(KfnBYBaos3SgCu-V6Hq3iKr02|?G#MnAH+u=vRQ$;J7_lN8u4dQpMi@w*n` zk`&=$1xRHP&R3w+2?PN2&q^KcM0}lXEu|4?A_c3FwI?VVv z*NVcf69&w<)aj;v%#5oHF(HIFjc20JLvqHL1<|Fe&m1?bFh~$@jtw^_jT9+OCAE{t+Al8I@=8(5vrgCoGO#0hP~4Ga`_Oy4(}VVF2`2BuMw$Js!b z-RPv2W0+Q$#tG)=R%mwSjIM85;Au9)G%*$zj3hK3Sum`Qf$6#1M}PbWs-bdak;lXIdU*bUk-u{lWGa@$ba{Nn}^hRra@8w!lD6S%eu zsAPnuZ^Q{unvsnCrpDRHo_L5w|rSSE~&${(LdM1IRpEH z7#i^*I5UEfgiRbX5&GG|7?424pa40UK)HW&J%}!(Z+Z7Yg-`^s4XATlaEeCUMUU0; zIqSz}{$n%$e{JU4O?;7Nd&7IBnDnb8y_FL_f||-*l-(khge5;^s=WEu;!+y@6TNQm zGI^aoesKJPoTtTL;zY`*vVMGfKqjI#gZA6+8dFcWYlUZ3DgbRlTzfJ z!qBjW^04Ha+z#e%bN;r6lFeKF%hCo=DEfi@=ee=gB)(f=`lY8Yo>%9uWN zx_jm{mYQxTRu@nNe12p-aa1-|->&4NXHHWt+zs*DJ);cg1M?{iPITS(2WXzFAUhv% zl8&G8i5ne%N%$Td@abY*#G-XZ8y4>$NgMKX#zQ@Qq*tGOJa^Zyi~MLxxv0X4`|KT^2DzJTd=+|| z7@@&*M?5BXfya|uc+kNVhnaTCmUFRh<1oSAOXrpS(xdK{#~>_ZepJZZ|J;(A!iPY= zSb?7QQFW=yozJ0+tZsITFuQ!w;8rBKrzmx>yJL1;R^ILerBZ-cXo24 z=aZ6`%ipxQT$J!GRA{a|yw6pjuLN)GX|u@?gUk(Dy=s8JDgi!Qp}{i1&sLz<0QJD# z$;llX%uhMF+^#=>lk1&}bJg?~Y6X2!D(IEL0DD~CuT`KY1-&Hb`nbH|I4PWnc-GLq zDxrO)LR00w``rrkm7vAg@6J)ol3Dn{c`+CJIeO~iF+teyETVx3gU%V}9=d`*=a%P; zU#Zn<&&?TE))I5woHMR2pT!>*`-t^jTgCTl4!kCQ!eDdGSYnOv95Xxf+vc{1DljG=-RsqQ zee`&odsFSCOGSOWG<>6mI_n&vizz2Frsj^~nubYB<duE(tKeYo$EAo7meKZlCjJV+1(2@B|M%`cjMij_$biJ4vD z6K#>ZMV2?iiwL762-xFgN;cB~?=`$m=C5hw<86NuS`E6tLto(<5`MUatO7;XOU2OB ze!5i?q@BhMIvYruo55t{b{pb!C<6Fk_JAzGK&AXb+@J(RL){-jTX}{2LJ`EKWP6k} ze7260Z!NPVQafxQRt2hq7$srM8s(b8N-)0GU2&>{cr|P{rWHE` z$x)80q2L_l(+~#vvOu0ng4N_?4UyiXYiKiF*45*cuuM})6Su?~WYzpWb#4H~ajmm~dxQ@{A>o7QMOfU$$PVVV;#_idpQ5n(iD%3()$ z{?;-WN2kebjMYs*a2W0*-sJaKpjvA%+&S_axbcW6CtWpsl^@FQ@WCqmmYlh6@@dII zu#ZuDm<8(@+zj6*=MfBC*r1CjGNm9J^46n}_7FhArV?C>gkEjBs)!Kt;hs{O@DJ-ZbdN@v~Rz;=5 zJ^V4RM+rHSd$#h*zwF_Yn5vLIr->-zQwS8O^f2zFF6ZU1L6P1=m~1Z(#jj*nX?idt z%mnC7x>i9ABX=<))8?vFyUzS>s6NQRkDpI*GT6ejKt~MlguJt~C4)L|$;dMaM^#Rk z&kw5c?#o}1*@t&uexs(NvLZ3?5}1LB3_N+w1Qf~TJ!e?&~4L$_d06aLJLDm3ncYaA+?xGCT%)( Nkvk%a@ZjR){{g}Th|d53 literal 0 HcmV?d00001 diff --git a/.doctrees/datasets/musan.doctree b/.doctrees/datasets/musan.doctree new file mode 100644 index 0000000000000000000000000000000000000000..244eb89c6b28a675a8c5766b06a9a5840dbe1717 GIT binary patch literal 25811 zcmeHQdypK(dFP~i=uW!R10nNLGzftYe7Addl0h6;g)IpLf`fp-#12`_?#|uJYIkOt znZ1WGj&O=HB!d%M3rQ+=Qchv#VeBHIiVBGf7m4iaOR{=j?LX56Vu| zOg5E+QlsYhaq~>`nn#4P^(4LEeMp$y1$pt`^T(4RV9l!Y?P7V=1_Nq}X&7e27 z!x=|k?)D@Dxtvv~H6q)eY`T39Hj@E6jzh25h*2Vyu+b|=$SvtBRqZH3BEI+dc1?cU zRBqJuLD4Rq3Y}?*!56O#tjN6CNcv)XhM-M%AnC4pzSBJ3mGstau#KDUMz_n|nDik|BE(lNM%XVx>P8=Cuf|7A0%E^UM+-wxx{-iH*O0gICnXTL&x0e(S z<77|l#Z|{RrDzfW=etih^JFHK{8&?%8(ECFmU}I6b+4Fm_e?d4wz~~xa(Cdmo%p{C z|1ZY>OCM}D+@EoW0l!MZ-M#Lf0RYa^Ix1lD2K@kemV_nfMAcQETLh$?gQ$@yHWH5~%UoA{b0-7AEaUZqWF>WS^* zB9lsM!i)`JU5mbvu<+ZxE@XB^D|!THj24YP|Mqmvg3rFKa&@& zDqpMy#eB{7{QTi#Z=bsL=pA?6nyZx$oh%fjsD5-r&a{K3jE+ckPN<0wr;>X_QO!(n zk|u!U)2);w-Ll8{Xwr-P8===sZa8ncqCqxM| zQD0mg!!7Ekuj-W?KSF;=eG=S89cNZ_Uq-H-Q=*>Bn|0tjwZM;ZK{%67=|=hDLLT6}_LiqIBfOSs>(BBue8flutFN`9uKeVi z?#Gi6#{1l+epfK z2$4P2SQA%W(&j3&W?_iRE(Sie#kyB+51ztivgV#1Wk#qRC97GL!wiP1Y6pS8nSqC* z%G(64MSnCvjoS%Jo?TU4l9{B5{=6jmE=Iv7(RVWNn&`S)zrSkxGYwQgq|_NHTHJf3 zxc4x~Dse-w?i>S8;$neoQ49Ct$#KMbj~k3wWgAa}eziPeIsVLuHBBeVPGiJ!og)4; zaMp{FR;lA#)s9E3dQhc5c%lp&(TEk*aWhQ?rx|#X^+|zi;Sn3>>{-Q5eAm=omDFBg6lGHT zJOi((t-HnhO0JF9zRWGNV=e4orLcct5LLpq!Is}*;7Qn7fooy&u5o2?eABeLHi$0z zCyZiDT5mA$n%278doZ$Vb-a+zSRr0Nm9QnLTI3Z{wx5`k-B z`=0UZ#>U1J&GbmqJ1FU0$0*LEx1WL6^wzx&`iowS&byAcTJ=b*Q?$4Tq`3PTWRil6H>-A z3|gj)k1_CC#=6%~&$L(7Ph{zl7WD-w>T?W|O4Lr+{AC87M7<<%E$XIwVobLPd7#Pt zqa^orMqwto*BE$BZrv?D5IXfB^5Ou4T4`5gCTV&9E9L!|L08GU2sZrz15fh4D{w7r z|IkSq5gx5KiWq6oqgdI{Rjx7}1~WM?$lGD;P1_}sl%I2ocD zAyI1dqq3t7FY`5-Dsd|VuPbrgeY9UxdgMA~<)TK4_RyQjidN+igRJt~Ox z0@uPrt%fXv6nn%&%lG743mq)H|i9`xqomQTH(LS`@3sT7xPW zF~YF?%Alm1#{QefH;{AP1@s-QS_Xk`2gsOA!Q_j(FB?is=XS193CZRoPE-oLx_N(J zl%{R^0cq36=wmfgJC*lmSBM#r%fKibV1HmA9_vrIjx`h5RV$dbV%LkTQV`Y~k%ez@ zVAaC_(>xCD@3C#+J=4NyyI0C%Lc}S#R@o!|HP081DD=8c$$1|GtSP{W?)Y&E&OG})MIzH)K*c$|8p z7X4%2(Rq6B&tCYm4{p3l}&*Z1^*fol2 zf4_{L4IR&@P8c2AKXD+3;jNSMHjhdDsu$DqnK8#$`687i2j{NkXQ|tmsOP^$CQIu% z=_Z~{+nm!+y2Aiz=_%A><;zsOReALs8JHKERlXN^Wg%Dw^Uml=G4ih`PLqqVEJGwt zPFlH~d<4za{h0x2iItWdBpbyXX}??x0X)`olyGnGaEHNb)FaKL>)K}Jzri&k?%$T& z6_<2g|0=<0BUYA}jPAdwe&{CAx#L!XDR11nttc$LZLgdm=39R6p_^!a*$ePlKcpVu zI+cCq%%Ylq*rt{eHN2a2yK$}BO#0_*)k%z#)B2iC_0Wl&aMq#6=F0cUc5)%a)r;y= zKk+1ePTItD^EHxMG+k;iEt+oc30iBBO;o7EOl#%hZsC->=wnq4_rmN7(Qw}a9>>)a z6)Z^2?C!9PjjwrXLuew_9lhtys(A;|Aka~9Sf{pHG;OW`@PHD@=5?f|Zq*&IpP|x~%d7#Nv zCAkWtFq7O21J5GYcQ~jvYJTR`*|DbhOOoQFj3P~n?_=OKMcsbYJ=a{&g@qiI+uP?? zIVP#5?tN-;l?<h~CUvdJ?7*Wx926Wt`|aN|}kuM>2| z{e>j?GNVwl;$C9lc_cXly^f65*Xb;)mBkovR@v-zdY^BF2a^o!wJd5O>8OINu z5xhi~>?-EQY0NOflsOhXU^vtXm371qZ=)9zO?@LEzQ{D~ePy;5$vW-HZ3 ziq>~b>br%(*VK2IfhT=83*1_Jo`NL#Afr%|sy3 z7QY-QCtH%L{cA$%9Aoe{t8SEmC!N;{+*QYZW?ef|okYs$Bb6zx~1rM~wu_?r42X5dNRyuhv1uYO&Ue2P)1N%F%CJd0!p z{OZ$E(z6VTrldb$;I*Vq_*IV>wpBir9%+C2veflO22WGhUor5c>k9(6R)6}IB>B&b zLQRtY#K5yiZlhg~w8PCW7Z#aw`3Y^=HzesFF-VxCzt6yH(w*>_Z9-yBPtqvoS$;yR zy}VD{*DuA#YVPZAV&F;bPJvsiAMKYU#~Fp1Rgz=iStOUcOZuq3{Dijb?UM8{1__h& zQ3hUVJp5u(xTakKQ27gnp!@!f?qQI@ylOB~Mf00qBN%Fl6 zJd5OVhhccqZ%EQlGf0@E&oJcsqA?Mo|HW&aBKCM zzmX)r#3g?BDoFYpJK1M+6JZUx%`B-?6)Q9*BK;C(%)p@HR(?H3}P$LTB=;t zD~8@|Ft5ZeOV?U^H;H>#H$GN#59?y!N$dX!o2=D~c1x0%F$y&+;oPd?Fm3`-! zic7YtI2iCgY`ymvFI1vSv0k>actHo2%<5thm_sfj(W_H*N{huQv?!#-;*`F7ORhuV zVbZ3b9qX3xXR^Ltq>oiCPkAA`LM%^td#9GCT%neQyeeGeyq2eQAdkvzaD>H6305;t zyyCi)@5%c3A0d{%F6F-%cxpfYA&t253~|qq*jSj79%*+O>=(D*&G=Z&t#=ax&!X3R zhh22AR6TWQb*KsMlLYrN3N-tlJq)}is2lD|>r(!$eSN5PDXCwtWnD_IoFdPxk{)WS z+$pVcoT1XR$}t9>ta4P~THNn8MsYT6FTQJPWl62bD9WT(VBlL&TWQrMbvF94_VxS@ zseBbH($4FR@JVT;Utx$gjr2GJPih~NDpu|lx{E=OP1wl;U4zd^a=*(c%p~_a415c6 z?P^eJ>O>79>eb?fC^|tKR?Hdey3u^7^ zODgI}eQ{Qt4Gzc~8$MQbV`JdSC_Mt#qQ1IgkK*yk#q;t&JJUW%ZZD%Sv&Qx?@GZ!- zt1+pm6E)T=Us07g)S))Wozfu383Ij%9An_gAV&qRMQydZpGj&(Mo}iU0t3&Ywq@F> z*;Oo`qrb|6ixagSAC_bn7=@c;XBl`+wi6!GBi0BidFheX^;=TcZ!&nAx}Ij>N!J;H zJ3s&UV@d5fMo}iUPciT+8}ef6owU8s)1DJQ?LH0(XA( z^&Ls=KN&@t)c&1;XHmObM41u+rbI+39bihwmU?$CmwPY`EG42)tq@&GM5|JbhL!Qz z)1TmHtn0IXv$&h~;bS#-({2V{8?6)G+A9|wD;udpt?U}9?9B|OraSCo;7QpP0@uP* zTRw^3EXf^W6lRjUk%4bPu3g_EHF0aJHIByYTquZ0t&cP-kCH!ZiIO*+6NQk_k2Kxg0GJdNF}2es3k2=%rI+Kb zWT?~#DNuAF4G=w*Y*8s9l=M`x39+GL1hGP#?Cn|HYeWF?V@zx{livI7Y6F9k*&fT` zsiYtGbL=KXT#zOX#1_dITViprSr$`3-luRlkRCR|Dvk!@pj4nmA9NO@LUFQVItXGv zh#eytb{eD*)PAE@n5P(WWVs;>NqF^wh@|Mp5i+|>rZ`m$nIfeyhakKK6>1x0r5B{J zw;`LtvxIS>>dYcS+VKs^fNNK?!=7ZjGw;Dlu^l%e1?ow9%1*H{gW`tf?9hjmfI!IB z8dCb>5W5>mPV@0($n)!sxPUOeK^Z9Qe{96lqX$PL58p3ee6rw#VGtG&tF2tc{s>eV zw3Xs!vNdSLi*xA_xipjAOU^9GqVgN)LUTCg`6vKw(w z&`HS#ifTSsZq(|9%;jKMk${j2Sk;aVB*wNepshIdeztgm}4lM zE-lHPQgrrLtL!P%1$o>lC(L)dc*5MT7 zmfR)r7TtYBM4a;3h%I z^QTeSst4FXeFFNvB{;Fy8->}j*-?D_Q%yKWt>~1|Ru@3Qbr8A#iR7XZP^Sub-}0&j z{5AmgBvVxW$CK@8z$tKy4py9#?J?s!itB4Eo z_W^|3?H~!Citz&ife-&eRDWzA-?1oFM*c@Ka+}T$C{#E7XaM!|*e|@rj*>n)Dbt4K z4PtlY1#Fsy; z)s(nms^RXSX#Bg~t19oK`_NUg1PZVqOQ5~(vILqL6D3sW7Tib%O*a!_2TO>bD&#|v zOrg#|;iQ?&6lww@70y;G2Gz`SMdHpSi5a?oQI7qpRB_RcMfsy&$A%er^F>SZO3z%7 z44|tjVKE}yw3%$i9AOm|OMzVQ6Ap*d^fRcN%AdkM$Gf7(n)gumV29`lFl$F4h^b&i zB^Zhput}$;QuVDf{UHS%>LwXJ(m({s61oLMEue3RW+;8hqRN}JWR!rtIrWS?((Zz@ zr$2%<^|pWZ^ha}gFQeGRf8iF+1HM(+)&?g$#7=tBTWMF)EoPyT?%Sqrxr^>+@^>}R zzotJ|(T!)3$`Ep05@-WI>R=~3vYuWUjLcZs3iy&4yKFypy0bi=yyY0YJES(Rtd`n~ z;soKj!h&DP;QHmI#u#rSk{+KX@%)-=gIi{X$~Cy+97gC;Mj+9fGtr_W87R}OHN6Yb K%r1UT;Qs+Wz@#+* literal 0 HcmV?d00001 diff --git a/.doctrees/datasets/vadtoolkit.doctree b/.doctrees/datasets/vadtoolkit.doctree new file mode 100644 index 0000000000000000000000000000000000000000..394741066401e0a4f114c5cffd5a7ff7f6e15378 GIT binary patch literal 15301 zcmeHOeT*H~Rrh-L?U(Jfy>XnHWXZ(E)wcD%_iU%Z**KPsosVY2CbVu+MGfP5GqZ1I zcHYd(eC&FGNC7Eo3^zdW1SFLHfuNO8QKYB{iK;3MA}A{2FQlrXLVye6<9|?5TFUR- zJ9qB9jrYClWGncCNY1`{=iGaK=iGD8z4x4ZUuwMewTJfb|JcE_@A=WSrsX(M?6_&c zrk&W%dv25!H;Rw`a`9rZ$Yv62GmZ1ab_=!#6t?GwPU1$z^Y}PN^qC)~&9Z~Z%u2eh zYVI}I!DiDiH!LTM<8a;2mJ4s{`GU<_S(f;nJOf)|GwwSnx@1#!Xr(DC@w*XOJ@ISW z$@{9%vF!E4T@y6;;XCM0aVT;&m04Y)FT7bc5&Dr^tcAF*94DQ3+i&5FF^&9JG|wKG4CD%E)nZ<1tP#K%VF zXQ5mBGys^WKs0g1y+*1V`1W$a#{r$4^bGG~1l_xD)w_2!?^xa;sLq>5<0JTY6#qVi ze?Rejk$XSsErR@nAoq@Y_pVHElrvC*)lICvR|j+SQsP>f>lmFaW5w?oPgrj1#_N2j zycXN(v%+>B%+Bd!TlVhbm?kAgj;)bdodG2Y{XsL6SvQIEehsox?UWsdY2UTq^KnP* zz=-2;(|0njSUEtdx&jzK2MC`LHZKQGtAmYt2Q<)~*x7my7P5iyB;LH`hX$-Nd2bu< zAqj^~ZMaEFw#6-_rOIjqei1Tkjj{=;_gN5cj3UlJ^a8Y!OBm&FC|FNiJ=HwbY#Zmi zEbFJstyb61yu8!2<6g_k9oJ3#sM}JLrPT@JPOE46QR~v<7gry9U6Y!dzFiC?hu9}F{}Vg>mA z<}kiw8+Dz(I*Pc|xx1t3QI9d$h8URs;J_>n8L6qzx7{d(LnK!N1Cr%RmEK$E_0LA( zlfvu+@z+NYlQ4fe)PT-jeeCHcH_j*n+T7f1cB8x*C*4*FF>Q7G;nJCAyXi(vFYATM zTwbdb@EvI&yuZ4EhzcP2+hK5}f&8QQC3aF;h7Op@4!%9C`??*F>i%XFajCjpw*$H8 zmFkkk$_j#su|0b{BiM^SqcBQa*bjkzG>Vu6`oU0JI4;#*b0R^u?)R3~EkDg#&s@AL zthXBV;BEpd3|gmkB_$l05iE=lv2qoh4UJ%dR>wxPs*f}j6CBl`FLkr)gWbqet6NR^ zvQ#M{c!acP1eY`r%Ar00`U@KLkSKVV(+%-Svsfm2ZesgZDBV)MN&)?x0Q#H;<2ul1 zHRu)4UDy6hXhq!|1CUDTYBfr@UlPLof(BSA+#IyKsXt)P8NKzm1nRUO*f8uSXm0_UI zGisHVLLP=r@6n(qA&+soA-ZpzdZ68IOPFOz!8rdFeb`>YV|84a*fxOwRG(;D<7+|!(Hi0&uPoIYusdO%{7MFlVx0DBq?>i`1{ zdIfOTwU2lZOuu#@RuxLL-w>j`ssUAsb_aC&s~Yqq+UGgl5ZxbZ8;-S=8tv1|?e=o} z!RAl5&$J&n{RuS}hEOOmzAVJ}0}WVpF@8^jUWu{mBh*;)L$&iMOG>D}6hi%l21qH? z5$OCa4SEvl8=P*)*o@sTrv!c}SbryAeOH4`9oBa==oPG8*Y#}T_T$vgVg!*&XH>6J z;{8yF_pSz9Dc+sX=Jz$|Nxc8ybVIbhag_qAOZ~iqv%Na>SD~V2u$IK#rXRPgB=grS zn?!1Dx*eZNMo(l zC|kWisx*T08epZZ9tHhF8uTRGSxz^^R_{99K7IdE`_xkVG)2X$k(8i!{H{cJR*3K! z4M=qnKBYmgM9>nr*|ozm&&g-&0lKev+#34Wz&!7~qc15p*o{%nE`J>pBol`=I!)t>=Ngpnh#VtJatw87 zb=)vDkiJ5@D7V581{p?VQr)Pgh)#Y{x~v6w zQ#rZnP6Uf+ZB|<{MY+AYma+Wspwn2PIXc8^Og(aq&cW3IxGF2b-VlQQ(QOHa#A)z{ zRSWJdjJmgAhn8t`yL=U?)b%C;I9G)sBLy7#8SO=CsjJ}Y)RPEBP0I#qr@m!_Pla= z*=ROvo2h0$>dp#bcgj4oah_e9Q%OH+gp{_8Y45|8;85^l!NxvT1m6Sdl%)8!kYbz8 zPjGbOxPDN__Tahx`Eyu|{g~Wr28EL10TXdCTx}PA$o@}_ZjSK#TG$2yq9~l@QwI;JEw={P( zm1~u^6}je@x#Xt@%Zu+T z1%HI>`wH}S7Z`%c`$^-^?m{1rZtH_?19-0G)af&%wB0q!{sW_57SYS3$eo4OQ-c`vH0 zx+*J(set%`2Fp6cNP}KMRP$G^fAuRmNaP30qx%ca3aF)duMf_d+qniXow{AxqgHxR z6-qI$3vRzV8d!C=feh<+H0Vh&1*aQw@|r0@)((iOM#225fcd5d+xqyup+T<&v%$B_ za#bly3f{K_ymvI%)#1IZL9gJAHm@&e^oR3b={k4rPaXls$;aUc7#z7p$LyfISd}hy z{S90a9N525QydI~!F2&=L&X+1y~Jvy7CBWjWR0V>Wyl&g^=aF4=`LZp6RXN;Kdx2om|R`v0r7pVa{ovB2p)tE-@jMeafy6fjOn9XVfstt zB@KF-gBQd=?7T!aE@!nhvMec+GX=coHQ3c%#B&<-TJR>H1bz`wsOGJzP#|9wAb(ARX&vM%8uSXJ@=!ai;}4JSPp;$T1pWZ)_=vUV zPlQVTcr>Je75q&NdQ!<7oNmYpKJL>sYjNo1ztw2{wSe|l8m#K0^^OL;7PQ$m@}VaU zWJS+Ng!L)~^q&OKn;MMkK>uEYUJK~>&DU>8g#5RH_O5{TUmC3H(Ed|{UO^je@n6yC zkG2-V+;{FzZY?I{*5aT>$Fz?aTzLog5mRZo;;W5Bt!l_l0_(Sey67#?%Y;*fE2sUy z-F%BS^V@35+xHa9;_nQ~WBmj}O0K-w?9gk3V$NW%6svFBZX>No*?ir|hm< zQsKeFi-orUf;w0UQJyfW7Y^QW((D+Uv-5;rK$zvrhgG&;*6=qHs|?41EaMKB9j=~s zASV}PZiGh`lh0UTj$Kq0D_UG-GhLp4L#D1kfd_apgym4!C)k+idmY8uvY00!N(Zvo zHt8V;eT9F|*!)@?XNYOLwQA_;00okxyk}mcdtIctxfCx)`X;|UNJp7fcDJZ;L+tTT zV{YOax+x!$fLGa|d|3jqDPfvqX6SC<*3!yeHtShoRcx@s?lm7;LU=t-B~gPl9JiBq z!ESETN+M_p6o}>bP&1Pyi0Y6y#Vc&ikNSCL;tqT4fC_P+JX>2jyOjF)eb3-W(@l~% zF>!y&3Ec!5Ca88+u!9KM5BAdFy%cO=+m~%!1V0bcVRNEig+aEyXYj+e#_SNukU~)& zR21?^)d6{r5gK<8x!Q|uJ-b8X8BE-Ofn|V=53^WhlZeT!K}=}GcT9x1*8FRQH_7I# zJc~_L#rD#hodZtZ>zkFyL9x67i-(&;77|XY>>#g!cB7PrUsd%}H+Nza5j9X9!YqkX z*Q~eXR$^!7hR-wO)R*b_DV;7LNQrVvP6h8c+Yez<7{9nz0;?&>OmUL|6Me4l_SJkP zEc>a3vP33XHT#gv`=UB+_O~)Gj`&sfg561!)DuyfnTx>O>fmjqgu;$l04OvcTvxz3-I@yAl-guf0miETex!(dAf zFwc`qd1o6Pk6DA6C8ixc{8}$y9KDX~V6JWfg6HCK+I4oP4XSn1#Z#2f#Pc`AV(HD< zE9`LjhznL3t_ja|o$VJr@a|Kz9!IvXz;eT;g&)Dhg$??MZ(~+urg#F!r9BJ>4V%jF zMh<#)=*=2}-}3{t;$0i6(c4;8pm!?tB#!(%UTo~QQZ_{&MctxUAQplzBXAu2KK*YG zj!?l5>DRmT>-+S-kHZxNi}+v8W~ecpM)-3(-uxBbdX=|a<*inEi`Cqlr*~xw-ie@1 z>(B|ofs#Ce14Zfu2Rh1g4tz1r*@3#5abXYGK8%&bheV==oPnehYO2==I!rehTdxy` zmF05MBikw~>Y0HaXCznNXnvr7`1K^Ch2+ldeU)GKuvxe&8`(;jX~Fg(s1agdAp@RB zB9bWTZ(wYK5c*jeOJ6QNMee~$;0X|BplkQU7}=G%bSuSdm$ho?EFTA|Bs5#Poa0uf z4Yz>o3;n_kLt#q>4c@X*%W)i+$y0V}RI8gWy{>X2H(&ZHm#QO$ z25*6UTcDuI;+L`Y7HdBaJ5Ol#Oa0X~XZR`dtr;@qayzzNBi|b#Deb06BmXdh?mfB) hzKa&O(8QS31WCTHlAQaMS%>Zgl#3F@nee{ue*jcc)ky#V literal 0 HcmV?d00001 diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index b6318c5b0badbc4a1f24cb00e78827967bebc4eb..f679aabd8a42035a4476235dc61e62085efee03e 100644 GIT binary patch literal 33653 zcmd5_4U8REb+&iC|3BUz|0br{U_v(u`_@T-0_7);?KolWb!0n*K+G`v-t5kd-<$V5 z^Tysy2)`xqmQmS|2c)P{ThSs~wLn!0sIBOakf5cYqCzV~5ww-4L{+KkAC%J4@0@e* z%)FhqyKkPoPAqxn&AIoUd+xdCo^$TGbMJj;&j;Q2?BIXVL{PIGZ@FN3mmR9SE~NS z*^*f|1FIgSepHLW>;mDPEvUjlBkB$OBIB5D7YE7|tKOos)QCnD?fSjwDq1y0oq8W$Q-U(K(&RuS#)*JPs-GpyTHG;ZnvbIJ0i-r!h% zP_O!nFPVCM)i%-6VCoI#5*iEysD-cr!R40~Us-zTkzyknte8RF@(r{VRXbkES|*CC zpJA6)zgj zl1I5Npj-DAlAf|E)zU)2u2;&9Xt!Oj*Me8g&X%f9q3VO_`!z(EKZEvB!fYdYu}(2T zr{z1|Qo&vHt4jr^I&1oMXVENzs+C4`7i9!asb~QrVfhQDUvRv|Dk{3-m8)hc{!w_$ zsi7rJS!|{85c!$*J4nLgQ+bhLlZ$3?U7_47-Y6i}uJ{A*QlW ztX9zJDpMGc@C?MMNs4dPs!h^3s)}gpqg@r#fxHna&|)wu`?c{qBe3s{s2rv1a`t`E zFpU+W;}F;<6ym8R3)*72ZkXkA^@_0=KK9s(QTI(RD4Q}kR--yt zg?uMTx+R-r1U8r=_(>j1RUTDR#|u!p0x7Q6J!l5Qw-%wAJ<{DZvuHI|CD$;c5L*Gg z!9aU@p2Z}Zupv%m5~;Z7AndBes)xptJc+&%+@p1?0-aU20vW3p8iIDWh8qj8ZIC2Y z-N;4Dsu@>I-$SQpVxsXNtkrxAgEme9A{N$tU?CeO$bO|#^$g@Av!p8;gzYh`ngd0t zyM{p+F)7dlGm1>Qh3t!E6LqV88m)ncroRF?5`EQG!`R@uhdnqCuuANGH0I}Nq>TwI zWu2cu3KE7ZrdPw535?LkpcD-Ko>Q+m#fwnioM}|OCuWVodz!)M$R$|f3xc>;l$Gwy zNu|4>ukgz#Sv9E0xt&~}ea3!BD&7sfW*f+`0E2;nrAv=9+`0rNYVD^;9nvK*jx}!v z>*av-va`6NK|=&8Lc08Vpj$aes@)(L1a5%TKNNtc^-CedGUoI|3TD90vNzIw={PhK zvwKfEUAYqE6ivenDuu+Fr^_`PX4KDa1)Li84Z6X7C`2}dRw(#hAi`=uLTxi}0{A6m z5N=n=mdCO;!Zu_93X+wTz0WqeI~lBP(#d=Kl`p!B;H+~8Ifoc~`+N5HsMJIPOPO{_ zQ~8zc64(&uS8g1%JtGl{bdwvlCtxvlsJ-k2HmtJFu8d%88KCAF&2GjG$I^pa1J4k{ zI`l4ja9tYd$^-aWP}24f1=!D}LZ?I!?iQiDNN#H5_B3b-xhxG*)cICyiY2R1QG>71 zoM1m_zg}t-o@v)n8*(WvtbkTjV%{xaVH<(rE30uFXANKr(Vh>d>xafLFv>AH^+4Fe z?W~vzZd`FnG>&#iDQOMsO^jyJyN(C93uu|Ok_@Rg#Am)L;4#JtPrm3o?AOIyl@#*S zd}kqqhZ(1gbD1l?LoNf^3mDx&IQ7nB$ZVFSLi>n)m(r{3PO#85DO~$*`yR3T4?u#+ z0f@#pE85`Kjk=aPP7ya%IopzXK-?5~n;5~INu0|?^Rff770{luPf0DOZIw;cQirK7 zHc>=wIh)AyP0XyudR3qD`J(iXa+sx@=RYQf2EB1RWEUc$|vZ140kED^d^2R>-nyf@6V1 z1~I8p(*7Cy73ua?!+I?w-$=V|J?y%v7Rl@h&H!8-_$=_X$-r=XL~z6~lHJoY*sj8q zDy$gFY)Jea)oRr^NlZC9j9aSJ4J%?!iZN`m^;R80-f>B^3{TNCRWgvsz>s60d4Gtx zMe_!pHc$!6tLiDRyMO179nvVNn2j@hJDPj@+Q>5Iml~uz093*RKcsHE&}%Yx`dK~U zEtb538`M^F^*kBXRVn32 zlk~1fr!i}I^!A1&_a@COFg|aa>#Yu^Bs+&Hbqv5qylA4 z$CTO#CH2DB3SpY+m>_W_gHj2_D$sQd8WRu#agbTo(BKcJ+$<@ilH^wfQ!8lDa#-=u z1!<}&&oVSTyk~(QloIu7t!!Pk%Fr|HMbi9E)w@S>WUNCPZOW{7c~wQ$q!i>dvNv#$ z$yeZVqmqVcwD1s?h~fJLp0ZT2_rmGpk}gI@%&q3akV<0T%l&N{?Oa5WAqGA*-Z)V) zwb}Y}ilPwRT!h%Mtt7a8yM2e?y_uA`MAWpWm6nN2CZ3B!ogvca_~3GkG8#=Vk>5&k z&me2f}s;R=kirr_kg{-3bhFGvR<_sSQMQIrbB4(I_j zMGQG$&h3mx#|RZmWKPM{O$4o&7h!ruh$*mwUle>)StbJrcG(iMs+}bFRk39l$JnKC zBt<})Mt4FNe8B_mPf#Md<&0-dp|#dj%0Hc|E>6XP<&o1)P_)XJcYystGP);pH7y47 zm`=-%4V}_@D8{rWjEVYnAVW#iUX8*-6Ro=Glrj85&7A`}wdhw7IEZ5(u?$cZbP)=2xsxEE5sNi?+QJH7DSIvavHgku|pBhWQj6HttQw_j)qK{ zmf`y%R8gDYG80QQv*|3L_Hem!( z;VgwqptO1s^FBRFsF)$VpoNzo{QXT(L~#N9~^GSiJlVtxDodMs(`%}Gx3y-6}KDk(&Qftpa0;(nY>qJ|d| zT>BDS+;q%1#OK~U8wURDg5%BFPFQ!!Ns$z{V!TpjJT9XXl2TJiMew3|%1ZG^pXSDO zjCwdKF)PL(R3fBFM2q6N3}pEnCxgfF|>GjG(!l(PR@u z6ewC1^}=byG9x^Tz0s(O3B=~F?;*9qs#j+1etUox6yP0KixRM3-WLir+wC> z745OOOc5i~oWV-c0L+}XWKrN73x9ffyAlQnj;@6Z_CX4!j;WT5VGat###~o)U_Fo# zVKJKcxqp44LnZ`KA*AWG`4}6P-sk$`kc$TM0HOQ`*Wq%_%cjK3h>Xc~sWibP_}+DJ z(b|oi0U3k~*iEDKnZ|n? zXB*SpCel)4g~IHy2M{(maq7%T{yt-kTS#e>ly+wR{MiTZd-(i=^E#QDOvy=Xpcq_k zta0NB-UqEys6i2}F$V~=zlAbWS%@u^Wk@L}1t$IwctF0Z5Ol;Q0uGAeR9T5#oR#&L z0ut8XuKaXP{E{##-r1ru$<+K>APch=z})t!Wd{%}H)gH>6|| ze?YU_izjGx`|$*-L3s?zV^khv{0Q9%JT*l$oVK8-|F|;I7`!PKCSalDR$#prN=SQc zK}k1x6iq}hMCzZt#`;NLZc#rxwyamwL{G~cLf>nykv>vYThQ01U92XWVyMtDca3zA zZrp;79#)&pJ*8km!z0&71F7OIXy{e$Z4)arP^ehCMk+}4Z$U+mc(qMLD45U?ULy@; zX||wYFfl^SU6M`^YTk2=)R58Gf|?}i*Tj?rER;NbZIs{}ymA$Dck=!c!@?R~lrZT{ zcAs3*TkJi!q(RteaA~Zv%jD8%VRy+TnPpeWCAncY$)(<77s(~gvCVXua(v^F_TR)R z4K0NDL{(M;V_UY)2C(@Wp!Grn%Vm`fvf(RCHPwJ4u59GEUTlOpGnag`W^Yhfh#82z z=Z&(lIZ7GIbbq3wo_BrX8=xfgVVzSCfz5T=(SQMhVQpn|@9{X`Z^PaHMe8)b!m)?!IT{ z$UQT6AGy7GIBu3vSp9WWv@NWT4jxw1$(g%mj^KYnWFylFU&~EJrW3x}DTqxu3wJxJj_`}?dY;$0&>#ZZ3_SS#qrXtf@|JEsr^}S`~cT+!#x`mxGa63Se zQ1Kg`HiW1M7sPUGq&YSe#pzBpN3*}*q<(LT*>cye>!TBBuDF%@E#$5%BTIKOiW{hY z$B*%s)l-;OQCOAYfoV=gEz(8a9?IR=*26c$*l6M~LO%%1%^;qqY07BX)48k9@cQ+g zqDV%}N$IZZZ4>w3N4uB6f+@t(rye+e`qY$sJ=fGV8|IP@s^@NAyB&1kFn>=&T?G1O zDCRgL^kur~Qf?wL-Q;zOV%xiE-!a5;c$0`ZHE&&+I;*y5H1*O(nWU4R&E2?mJ8A!6 z%yyZ&8FL1U<1=~#Nv4lJn45-7AAO)x6zlt_1N)VjKvA9@ph&2g?zADw1aiFS#+kq* z$dr~jcRDtIU(4N|*78N|+RFTWHFsSZIr=iA*wFmBzk`M$Y$!WIH=3BWAL~nEo7}!W z7(m|0bD=SfwU>D5jlybAVngHR%YT$3yP8MPWD!pSKLpFHGd5?GxCp^oE-F5WZHmJx zAg;ewn|6N)?zumrKR>2F|3`mz^x#hy{n>>-7Q)Tuvfgcih^;AKxX(wsmde!yECKb} zP6;a(n0byU{0gv&&rf(G3RZRIAPW*ZP@5VD5pYhJr@Hm~s2^)}ybrYzy{w%;Ij!o% z+e10>AJLMV)tDO>efdwonQw}xh)J}B$k;V$i7#CX6>yX}mV4v0L?$lmzC2bCvyh5> z3~j9-s7YHXh?nH9E2AK8XA~PMi0dDo7&@NX2$EK^QB#UY=X~x4w#m$B_;BijziiB5 zE_cNl&OXp7io|%Hkj}Z@-f-WEWs|;!Yo3_IP+`5FoBVcJ-+$Or^(&qw@wRI2N;7OP zcZy=$+1|@Lql0FyYoIXwL%E4>m+5_n`Fm^Zy_V&;gy+xXt~0~)wN6oNJJ0*h@jkwF zOpl?$^*_i>e!E=nKP>wQTd@7Jxhu`E{nMSISkLwjYG5_l=~ z#+m_%?<{ppTfq&24wAQjkP29>I_}AQZWkl*<7{&9|9hm67KE73knOnI7yK`5Z z;p}jyD3W0^z$iA1`*s@kjSYWVgrgWLI`ZYY$!}ARqfOj_dvaHrVf&FzQEWTgwdHT( zx&{i<-;|s9cA37hJMf0wb!K>ezEc$2&hyytH!(ei3fJGBoBVdUzKJ{VcDr_?f`$ebmQEC_5P?QGY!zR4D8pqQe6$W45^OyAf6_)hLRGd%yhPEl+- z&tp^H#Pk>{T<^ufhSy^iH>0u>E2pk&KLorE{JW58&Oo$#0kSn|J{4$X#iM?QiQ8#kR9u8~e24SQi5LSZ?Cm zW%|Y*z(;e}nc?}bc8X%#c^=#PCZ@+w@c{lJH~H;yeG?Dhi@7V!u>A|2qFB%N4$ODr z0f+_Z07XK@%R6m|@&I_Z?2YpPTI{@a-xfOn-2>OhpQJ`@*5 zH~?;L;@f5V#ty(z?m9C(FLjDy+j$I}u>C-LJa^?O)>;-%=ch|HQDQekPUceV}*Oif^KV=lp zS1;guxf|FfGq>^r{xNsO8P0yUQxwVQ__lP;a}ov^9K1f>Y(|bZ`xvk z6P|bhVnI4Ukx=pZPF1A}1Mm@1H_i)4&XsEN0iKP0fcNF@nAQSC?b^x*xSG4Jj2yj} zQEcJ^{4=(0wmR4-$I&avu3>IeYS-|5>JE-4al6_2ExPWfKpqZcO!nY*C3|qA{xdja z=(1y7!7=dHaW`&6n{)L>U-vV_AlXwz`*YoKe7qXn-S*yGJ^`3F=DL$8IoB=G$6ph+ zZ!2?YOEyjfNsdyc-O;JDl3VYI{!38ieieV3wmzrXj(wcCg``@eTS2yy^IvbldH0Wr zJm%zJnv)%ba7#PHzpmvNk{cUV(7$|xm|p^ z+}uvy3q9Av=gQ$h-~Hi1>(F@6`XL?^_`-wSFFa__&Fu`MQK}+!s{@X7W)Q9(l8x$g zuw68!4hz7227EoJoOVas{jtfvogMRBALXU7>n7q9Mq|A59%r}Xq-D8ah#E3wZS<)k*kZ;iD z<7UV8CjKTUF4?AQGx-==G$PtrFQA*XOPdkd%5U7K|s84_v81fdjNlNWbIA-z~KROXsv3eeMplZ8zG{Q z#u-Y`IKx9^oyQs8XfGKaG|up#afSztGdyUV;X&gJ4-zk&(i=uyxI>K49s&gzQGIe9 zZo*955RLQQQ#nR(QKy01gSeBWERnRz6sT}Pvv-f_l>}d zW0Uor@9Lt8XxuoTTxX1H29{TF0Lirb2y#ceaSK-JzGDk1?#Iw%y7Cwox8s_vsOLex zn7xiOg53)!!|Co@=$C;%PvL}-1zarBuW!o5mD{zInfMLIAio*erq`8?hEMb5#8Vq% zUrJ%`Rd)xv6#zFvIdqOM&zpJ(7ii%Ep)9>#3S$$IZk^FalMnHIEK^OiQRDQHDk7Ds z_b55Z2KnUJVm?xWe+mEzEw{3=5VcNf4F#fj6Aa5<@|yfYCVeI^e-))(G!V)9BN`Uj z_$~fH2;>+SmS+8;pGZ!J;8@n1AWbh%K?C9NPaL-ri!95j64oaht_9Y+i_Cw#QU9t= z#v65u>KnXWp*PYB?lOJ>@HheZOp><=;2i|uUCQqizY^W0X#(j;){D#0PiCJ zf5j9D;Qa(3jpD8e;28ptZgCq7;1P|Z%W;tm4M8ZHUUeBjG^9>%vHNkiB^`PC zu;*MlE=T9Xg`al60c2$Ci1amnLu39{0g3!Iegp8E3P?>@<2L}mrGV6oHGTu|+X_fc zS>rbVzoUTEoHc#}@b49nnzY7mPc}j#hfpv&&dDiE2iMDFuEAuL%5rdz`*Cn18aa*| xed(GBYHJ`T8$}biK$h-)Dy#b_=^R)n-~lomhO*Vs5G)kkd_k945gQi@{|{(V6)pe( literal 19133 zcmcg!Ym6M(Rkmk5@Avqy0H(ciqRi=bn4s_f-Gt$XCAl@k9JiEhb&h4Yu;YeluI69J{C4w7 zrRlBw+0W;%=SynX?soGvHQ9`uG;n~S;a0AW)Ujs1mZ*96fz!^KuGO_ufMvXw)CiL^R}*);@sxjez@UyuCrnJ>miN0i$gtLFVD&CM9oIsOFQjc z&3S3sO+K`;(v19i6ocd^O^c9z8T+G-m0bOd>9K*Q8~fpUJ!r+zdfks!>^SvXwgarT za&?Xd0;Vj~07JNO!;b5I*ov^w{jeR`&EiY_HNT6UOcFv?>bV^^S0`j~t60f&ES96J zs4H|Ork!j0Nw;lpS>~YLR1@uJJ+h*(y_IjP=~ficX%TUfd^=Oq3oIBXAOvT zKlQRk{-&z7v~6mcLLa_aUW8Lq$Kp(iKRup$^q1{*_Ob)TQE#GR-knCev1`bqXFZ%0s zZW>AL29{Ujcj%LwCY`A1E;rhdvw`{7{UilzQBS6h^Wtqtnw51Sx^B~Ibx4e#`P9lY zot0;rB#?GHWAR_|j$>ED&~y3P7jy5VcgnkqFKR(czvV>Tt=M1p0N@Zrk6_bCHBokW zw%4G^r@bd+@>uM)T`0O7Jq&FmjhgmW@i@VcjMbV97;oF*dIpt}t06bcrEvQU9VTsC#A92H=`l=}C%vaMo&=WFmu~Ui4Q*766J6MtRS z_0D)dEo0~XuupNRq3516JDYC0Ejw$cRveLjl1ZoRCQdR7Su=u9W2i9CO>m5FYN#{- zdMX3Whzv!?Vj4MC)F5qcVN&duUGMGhvJwwO5%|Q9&8TDh=1ks$*&T3kl!nj^kf;`v zb4c2|YddbfEtpI*2(cB=9Ng$FtudRZMGx%MCYCBr4$Q81tWRj698+p6fjyhL9cZo8 zO+;4j<^p!kv|A0>HgJ+&Zf3)EyViX>4sj?38MTmP-EQncXp0^IVrD%760&Im?{_*; zXki=~CbQ5atdHe(eW*%vG~5J#)Ul1@NdSD|4DhweEtx!Z)kwcA+9y5A%B7P48t{cn*5avoN3mlL5gpvlqDC zy$2#1?Wa+lGBY5@hBlLFJ0ZR7x3)~v6g4^Et~gE1E+w#63{fgmw_z{ zN-tL0ELd9hMuzWQhGt@NAFK9jXM&ufB^W}jkXZ8!1$J($ads@=)UbCj4C+H6vMF>k zf%hI^Rtp^J*@>UPGid{HFCuGR@ZJpDkOmYaD=Y7WXY+A#v$086FN|wn^a!=H&Yk2D zV(z`~df%m4i)CBIxJ#cNuWgsKP4Rf`#zEUN5W&c7IrlE-NAsicch7jv4+z8>k-uI<(oM&ZzlUn##1aF7j)co0M(>g}E zrb%NLyM-y1p@Kyh-bQbS_mcN{_h1KA50-AOq0{%aU)w`D=^tanc9Rdy$s z>3S5dciwwm?EW=yFgXBfo`+%&acZT8>$pc8Rqbxe;0bY4;BP{Ld62l5Eql`k+PcwO z^{&e*H#|K|uad%4J3SbYV-9y1iZZr)I=oMLzbH$HW0ru6;9HZVOS8C4FrT1F6xwaf zrh_xxM;WeYYofpJu!>=%rH?Fc*M(~*zOp)|V=$vJbmVXp5eK<&rZ;Vf}mz|%ZKR$?}k4%(3E zJi%y`?M29Tq@E%m5C}pLLIpw*CaxVj9(jHhgh=Ad+@3?F#ddTEI7X=SI5o1T1Rru& zWF5@ykYzOp7YvC3Vp3(M_w(KdtNV?zw40G{WL&oqcHQ)jBz}T302c>73w&)dFuWgO z95IY!_e=~sRIlmDnxIUE(%;d$)|->gilf7@Wm&T^2T>_x*knc#<{ zUI4u&vD1f5$m=x2dXO~Tw!azILpNOsyPXw1_QLZkZt{T@SkL87r@ibDZWyeI#=ZnW z+)0yJvy@hj6s8Zox`e3V)n{{8&@U$I*p#jH(5t^hgYKF^1t5z1;C|=>F>}wu_uH-g z`JL@1lF;0N6L`Ry(6m#?!fuD|m^K|58N6*7y=WR?mLp5j7uv==QFN8cDYav?k{2ST zp8_bp67`%a?CmxqbU%xvYG=oGS5`mAW>< z@nhF7u3dfQ;#JJMe*Hq5(;Q~bG&$c7AS~--p451^3GWsy#GEh!bJ7jZH{&D=k>7ht zO`9ZAorYF(O8ZD9jl$Q;V46|{NW93TEJE1|933~!OA``t;91ttpbz&vDLtf;x4LhD%LdS0W>_kXK6nzGt#Krb~oKN^bC8E6yND}kI9HW>re$-G3!HNq|rJm z6ScT7T}*7~+^6upQev!`w7wNM=*fiD6Vo?Yom{f-M0U{18sLs?t$+*e2X zCfT6_M~5r{gF98OqrQ}*iNLONz>TFG;or=FnJj=cfXD@;s@6?~)gqaJcJ0b{paF{{Q&3O-a= zh6TtjB_t^W(j(m^UhoA^1wY0N_1>GITf=VMTE#!DMXg$qSf07zCyv`j+yU|@rF1Wv zWp)wfdDGV~8>VM>Q7mvT38ThMB13c3aRVa67TwhL+YrCZQ0J8Cb>aw#gCh4)@Bl55 z8tOV8d6;VKxsNV?_UWJfwAR%#JS24Q6JgMOBny#R5IugB`^c3n9Eu{6CCnJK4zPP1 z4GEea!1qO}B2A0PdCsx?riI)%hX7a(jKX6V$#I5l->q-n(H``My9M@dO0+u$&vreu zX+!)iY615~6d@fxMz*g_N_~O?9zP@pOpQ|-Jr}&x7XNe9GYj4N}t54F#bGXajlD>2}4p?N8S*gasb3D;bVa*V_;R zy>OPYbzmB8Anr3#Ler#!d5La(OyB7Q#O_+i`Gq!i?^+Gp*+5z`@yw3i*WJPuN=V6R zD+}+ztWm7ow9>7vN!#hY9|!wG7~OUkK0(;jSv|@^PZT|z7dToxnt|{w)`F`;hYpcN zK2~-&-AzjMa2{mD4VNKx#jsQ5Fuk0~MX1B)%3-tRFp1L&0F`w%8aO6oBI)|5P*lq$ zkogh_hI0C9H!v}7L!cvj`%jj0B~52E@pb{?bUCEshwy3Qj@5?40^?DVr9w4aVRePq zy|4gM!BG;=$cq%6bL9#W>8hDRA78_Xm0NwX97(=6aR#K4QX~-65}OM3i(!&Ayj#LL zQNrS_BjOOBdu}C5;+2LUu6TZy`t5Q`g<1t%nX^#LF&*WsTDcIsXbxE^{}@wjoI>j1 zs1&4_2U7`?mKiO|=W-+S=K>j&-XUtrkPD_nYhMnPc-SrhV%bRs)C5|_ZNCQ(g~X)9 zKw^P;-NET_&QR+a)4GE_8{9>P2>Ulp$X4y!8G>Y4L(NEVK*4+p30gg@j`p;O0>!S> zD4a%IG{Unuu4Z*kpfG=9FY6mtb2ICWdlPh_0Pi?*B!mAY%0B53`1Mno^qcdVMjEN!`g;ht#Q^jl2}DglShNcXs-u$dQ{tpSd9~ zpy2|1b-YM?m}X{E8h?5Rtiay1C2K`!9Np1NVIH*~-_b6*GhZF}f}^k4re*1L>V08KlNR7fPCuYr3RnIa-5()%OEx z2wGRoaMBMJ!mAfRTPvO?Po) zLA=bGPa(}A_swWd>Oum2y*x`JD~`yTnvPpeWo~i*O#Fh-(1AN!_uaI`0KjG|B%8RX zo~3y`kY@d`Cn@564wt*Q&!EJf^?)uiiD=|YCRwAmb-{R;iQ8^TYGNBXMjJO;97e&P zRwr1ToO>F;YH7jrK{BY4aEi^2%s@|~o*dEXRluie!F-&_fOvnzFa(= z5C0vv;m8nEdL(q{KF#|ns5H5?L-a|d3UXfneu2|8OcM20{)PNjzQpU3T+i3*E0?Yz z(7tm0=2fm~c*xjL-%;wjxpwE)OE0`~=cP5%P3Tc~8BIIMX8w>-qxKn0yLIK_3WbxaQa8h?7xSl&;KNr5L8BZ|>tXZJO+vWW_!&+TWf>?D7fsTt&;$Yr$K z_wB7D{}PDXfqza+t@rf}Af=9I($fajDDz}_KOP z@1X^#{|7$Q^rfnK=s~)-EBG%A4}Oe4z&ZGDd;-_tfA9%V|0^HgmyiFGk00_!7W@dG z1|#CrM_@F5Srx_n+21Z;dh1!iSQ#Z8R43nUNm%@;PB)-#DNsYBXB4K=w50V zGoK44&%QHEP|nhh;0BWlF9m}+RG5g)opoS9bZ7k+(C%5m1iU(~JgbUSBx92SWZS!FfwVW=P+&e_dUXSgrx5s2bW}+}-dktfes0eG7 z=D~jw4Oj|p3`}iOx8f$lj*SA3EcSC&_z-_i7_s1bwicIFqAjm=ZQ!*uh!+bGFEEJU zBly@&5iA84_vi_(?$vR9uMVc*6Q7U@zZ#eK)t1hmJ^%dj+2@zfpMADhn%-`pY`=|# z22(iuB(*wyM*DTk=a$dne~Dz?cL@H#So9r2>!2VmV4~2%VG!@`X`S8gY3&#&7(N_$ zlLtGkvu}G^zcnxxeW&#s2L-Y7wA{f><%hAhkW&Qr03b>%K6=oN5EfZOwEte3V^3CG zI;iI8^*MUf?`T1mZw|bt-MNhX)kmq{zZrO~K3@8UP;xIKK7RGPaES{IYjEu-%Rqs7 zm6B?ge&M(84ZPWX5>_pqK@5fnc^QGV!KqKnerMq2`)K{`gMug}=AY%b9=AjW}(DaeVV-5Q_U!6L`*UNN7z;Bs?|7F3i@0cbAMxyVS zMh^<&T|cH1mk>{K&9q%xbMMz~>5Ao^Q`&2g9Mai=H@9CYI(f#?*e%=3xGP#V_0)Z5 zv^+2leP{ICK|$<1qXXEl(gcd~JOGFii?1D2CukGMG3#F1`|+E=GSIE^TyPA#5dQK9 zKA7G4i}v*>^Vb@9tv)_-7{s2@M{orjL+V0aklHIS+kd{H%&+kN#$W)st{o-JNc5QZ ztR%931I4@3IuB;*C4z^*7fBw}W150yWMXV7qFhr)*4t47`OQ(!Zz9EqXl_OW&<)$T z;pAFpq%2oKUx}&pn=_M0B$WthQvDhhL?W7BcFNTU_LBgklx6V_5@+-j<&)ifbwPOK za|b=QQu5^7-jU>e`ki0_=aX|ZKRLxdJB>(pVFWg7jZygjwX_Ed<4(D@S>+Tn=Li!&KjQ)N}KYqs5>uZ{oS*#xnyl5ZUzkg5=?>gB>`SrV`m+Gcb zi2n4*<8j>kl!qES!$o~~!A}zHCC%SE@S1%zf9jwh-gTOf-R74?b`ZU26{^2DF#7vv zb$MB37qVX(c+ozxUpOd;on$|N^)4L%u^AUw)Pxu&pZbdG*ap!|SCIX4xBriPpef&}9_w9jm5evKD!5?7e>aeJt zuL#-SRpKt8q64|Kva;t5#5a|Kpf~U<06RmQrQmD8EciP9xYYosN_O~aC})qlR9^mW zQvPpup?vUXgdS6JvP#JVsGw4di3}V7M5)C#3D<*MdW#mz)EuH)dIPq2$(pXtsoDe_ zL#epcBYd~IdYB`g)e*i`T|JzsS(;cW`bDh~H{s0`2{P%jR?X|+8Rf40_PE^OQuvFj zc@Ae8;9V?AB3I#pOwDuLi`qTZ_{a+;j2pNal^l%KL!LxWB;XHucKJliR6L;`gG3e3 z_}5Oj9%I2o!#%C|K@@t$nd>yLpgQbu>C_azMxShT8YmzReh2HR(cAK5YT=kM!2F4i zw@<_Miw(RD3f4EzFMxUP<9UQjDe(oxH>jgPNj;^(*QjiZE9g*RNsP9p=KSQATOG5l zCag+@hnlf$6aii;Yd%ouHzqI56QRA+tA{cpc~s3q+ZmI}yt04XF(q>7rYV@ATlffP z%oCMbQA?(VQB6$1f*;VC{T^r${1D%I=@1+m#U_Ho^cQ8;R6cq$zDd8@QoIiTGB)2q zr6J0z^$YSBV^pfG1;ae`2>)eT1S9yq9gN~H7-yV65QS4!hu)|6ltI7H^MoO>GG-7f z<3lqZxvF>~ra^H^riSnq7Y&{STrlmJ{2)O|q9a_}R~a#bSEVhyzrjZ*b7`S%UT2$^ z*=B*+=0&zMJ__$oOAx{Pc`Z4jVX6cy`*b7K0isb&q55*Ye9OgPIf@@BaZ%MuL&ot| zxs)vi7XTNPK;{>9bQ!Q(uw(Dau}gE11Lm!He|mD*k*ie7RVGF;&eY*>K%^f`;}_}YSx9Kh!{Zav$M!}Z+yD~68e@Vd+Ns_yo(MsW zC7vvLB90C|jc;ghsDV}un%ux#hl(+jk`tSN(MNS5qMFhLD_nT3=3m6ytyJalO6cFa zETw?(y}pz~oiy8$ehgy3R5O?L&-&1eL{g$^5ierXI}~mGUMCfhK#V3xs4cBW)fBV` N)vnS@A%sk${{Q(2KH2~P diff --git a/_images/air.png b/_images/air.png new file mode 100644 index 0000000000000000000000000000000000000000..56fd2ca95a1a3ad3b0ef77fe9d17d08782832f66 GIT binary patch literal 377 zcmeAS@N?(olHy`uVBq!ia0y~yVAKJ!jX2nV2PG*uqS!z*nW`3Trp1GchjzUIBNkOrdzJ4xTfnI)5y1rPm#W|oMoCO|{#S9Gm zi6G3l!hU%s$O2Cn$B>FSZ|`p8WpWf?Ir#gqf)odLdxauvkwcR*^MUHEA)*H(a@TCW z9hJ@7(6IA6Lqk2M*aXE0hqeSp$tKnm4zfANzU_#){<-XaHT!|`cFScEjGXJg&p7@$ z^Sva)e%WU?_N-#plDXT+bCAi1h5Lknj)L=s268!ex(9>~No5E=1p1i4)78&qol`;+ E0M1Z&UjP6A literal 0 HcmV?d00001 diff --git a/_images/cough-speech-sneeze.png b/_images/cough-speech-sneeze.png new file mode 100644 index 0000000000000000000000000000000000000000..239b2678600cff58614c828ac27b5dceffcba2a8 GIT binary patch literal 3518 zcmV;v4MFmWP)V>bE;lYTEFfrfbZ~PzFE4FjbZ~5MbZlv2E^l&Y zFBXG1&Hw-a32;bRa{vGjVE_ORVF9Q=r)dBH4J%1RK~#90?VWja6h$7#ztzXwNytnx z34w6P%B6T9x+p86AiFB!qRVq-7cbU>haxK=aw)ok0wRY9%gVCixw`sRT@V4U^;kvm zBm@I;CLzZplWVS?zV?qcotez!nj|DW)aSjt*Zu2XSO0om<=a)is_G`Hs;Zz+C=>(0 zbaem}3Wd^Is9;ej6vIFTi$b9o1}az-3dJx`!J<$ohJgweg+eh5RIn%%ieaFFMWIj( z!)Yg2LjC~+KmVeu!=O+o36QjcRkQU)R6O)3R7sAqm)$u7p1BJU`sUl1b1ENSiSk)< zAy-wMsxT=ON*hQ@!IEogQ1k2-1U~o(LSCM3R{{ZjyL{$sc;+wG1x*!2__yysXz$l3 zn?4h&EXR~fp-{S(q!g^s=X>;R#plzv<%-HEzu+gIK|Fl;XFtDgmx_uZ{&cvLqohzM zZ6zrMEAZ+6^lhcGp?fD+dSiUUM~-TKb#+m8A#Z;tMMt4f5+&&bOAUt++VhpZFMAtA zO0KAg@fYg_E21R^0771VCq+o1P!h%Pf+cx85PmGs_e0$2gbNO#X7fLyj?0x=-bxikeLE8IXnmJ3TCn7j5{M@X z!S~74ZAvf*!muD_Q%Bzhg+gfsh88TPwhrRKLjVBJ+y!xcWN#Hb^A;lb#U4ObVvm=5 zpw#(d1PcIsZ*4>Rz01K|w)(@`jf#L!*BaKXVAePpi}!LRnl z6)WAR$_v#OD_H(_-h~M%XC^j!v0HFEm+2@eGUYLiS z4X#%X2+v3P_;&0>)l=)hX1L&9y%K@K-=VK}b68dYo8H*{ZE7Fp|8!#wQlCeKxcF#NlABk;**Fbx_A z$HZ&EWo9NEcXuUx;K$~V=N~}%J+nY~6Rem03XW^8f`7-(D4*b$UqJ~5qr?gT0`Gqq zQ(j>A`w%8y5A)C=QFghi3S~29K{`s7g|UKgWTXOaQ~g9l`5J(x%-C|E~8S6&7isW@kYzEo)mLJP+psv*BH~97wRy zN^Cadyz)F)ms1-7<$3V^`$4X(gz()Ds9f?`>}C7)h3nCWU^=5eq;d~@Z@!J%=U+mSwF@BnUB^V}yxuri1I1gYdrAEwSSJ_e1KY`$ZCr?7H z&$ki+wV9k=yx*lch}8lxEYv_Cstyy21zdI(VB(<)VJ)AlG`t)@356PB>PT2tt0w>m z2<#KC0y#eFa>I2AJDQXmC&RyUHInfj8UwpKby=fS$&P=yebn%b@o<+O#fjUR`=uJ_t@7SDrlKR+Eov`LgE z9#B-M;jp$erX5erCLtu@)=NE1T53#%Yn*iF`{cqgaRREIT+^;=na>#p_cLqs=D+0e zpla1xh)0h>Dn1Et99$310kK$6v1kbZK=t_`M#R!stgK^3BYox!$X+ihmn?-;R228x zrXho28Z;146i6PAKFZ1TNCTIX17bEoE-8hOmmj|jjsvlnK{!quP~dowpPzX3lV(*R z3?&%QViYB)vJAp70K)(r3&;voNov(dZ9T+f(&xT43(JC7EvFHoyPMFU=3tV;M<5YCGIl!@pHF}A#y|*|loWtK8!_#S5p13ZW3g!U$86H_x(owV6rqX| z)L>AXLX^Pkn=F@%G+xqOm1LCMG7Zx46A7K4`~JJAdiojo-u#blvs^SHD&d~<`YT{k z94Nlwri8nrtjmS0%^RA`F^NURU{V}l)6xI{o(C62C4ythbGwnbd?`$44v4bLwY3Nr z9E4O{0={=Imqj$x)oSsl+8FE>9w12N0 zo2tnx`(-A&U5Z5>N z!<`^J53#5iWp~YJwhNH{=b5Nly-wdJHXAaRF9koKe^do;38}OUB{xrt+XCPRo{7vA zOHZ5W5UMDmaQuY0LXvXhWTf4BI~cQB^9_d)+WQSuQH1s4U!wZ2&!XilzF4h0?Vca^k4{%CXHJw_JDu?Bim67@JM6 zsEnhb6%r{{#AegyRPnugA${hICa=Tw>kG%EiEvzh9f;Wsu3ulc*R6u({BzqRRsg_d zXTdpVR*cE-Ru1!qXMTCxbaAMJ*7-fW~y`90igR#LI*Mi_2d z0|2ltCsLa8HCKIR-o>+*JF+myG`GY6s$;?v}mERUOEa)S}N4Ah>S-T z!}CDHB5TWt;UEkH=l%B~eb&8N{-zz+$B#qc<4+O%=wmHjs}-)r3&7ZHEu5Krr2g?H z)NGYu8#@Lm*H6-NXRYXJ@dNrt8wi2r!V%4%)30yL!@_axHEj)hU_hW15_1kdOC>R4%M$EdLw6Bw^yv{ zao#@@p2|uPlNo8ZP1S~zPeZJijD+=)k!?PY@82(KaK>sW3hni)k`1wOhoi3-4{a(79j-gRm&ljm&b?)6Cq9wwuV+!YrBMvv5grG z_qtUe9N%Oal&-~o&2Lb%Wh+=`I_$r`va7?PbRdQnEI=E|j<;|%(H0ilf?xrFW%&7R zh>&usNt-$aX;Y_kbr_URz>uSat)ZnHR#S78;&llr6iW9XX$6bK=@Le^x)SXYQYe(J zBWVRIZVRgw(;DcU8w#cSlC*+FtnrfWEl+EpEi4M9`;xqZWj1Sza3gJzNq3sVqEHM+ z@(LCqF?lS;-tx2twnvZ742wdcw1cD-EI@l>LL`v_Ml6*WSkZ}g`}nbNMSOg~+-Oxlg+l3GB)4Go zY$RAcVn+b^K7I6U%LT(@j#DUq{7KOqyUZqD(mRsaA107*qoM6N<$g6~UgTmS$7 literal 0 HcmV?d00001 diff --git a/_images/crema-d.png b/_images/crema-d.png new file mode 100644 index 0000000000000000000000000000000000000000..a1e8cbcc4df71e09ee5b27888f12007d11c0c710 GIT binary patch literal 2568 zcma);XEYmLAIC#er1q{>D@KbyLhVsIc8yx4rFKyfd+$-THD+tprgrU$*o{r3m0Cq9 ziik?p=E?uf^YS^*i+k_)+;e~Te9!lM&i&m4BLgkk8@Fx%003GYZKyE-KqgGm;#3r* zd1H3tAJQV{t6|}5;_<>az|PwVpl|2v3G?uUx!QyMoxFWqJ>U`$8Hl7X*u~e^(??!Z z)cwB)ARgY%qHHm;lcY;Pp4yf^006z+zk{qwxzd%i=cfZzH4V(iFNJt!e&s;_CY+)2 zmUiLV(jabzPE(cMv%1LZ$kKRoyv1WJf$ujG-$&CtEjF(yQQiH*=+WX^n;2=UqJiA0 zGS%*7?4t%oGZ}$%Xh-1EArXdGk)Qh({WGllE2cIZ#=AE2!|uPkn2_64BxsuG3dS<< zT;D3Nj$}|9)Fs!WLWuJ<#xe-1|GzRFD){Q*As^IU$M#+n2UVj-zrN`sRDrgWnR5;= zG>1DX3mBD73mpw$o`0(Qvml@}x_AH`v{0hJVYZybU&%UIPtW^>=>8DFps*^ z+y>b|)eB~fa7I`&)iC#zMRW78vX&j<@cY4vWd65!lsJydp;SLJ#%DTv?oY^n(bC*#{tg?+ybj8jET+jmBL$RTG zE-b8w^5B0E9OlWP1XNnc-b3x)hMM;-9NFi0y^e@Eu(H2%uVMqjmjmmj=F_Gn>jtEx z_>ndFVa#xH6(9Lu-5Y+ANtpVkOk?O0TzILA|KlLroxp7lehH}v#oC)BBQa-9Cm@heB*`-`F}G%IhdAPFdUeuw zAIBRK{%AOz-wJhmIfRR$uAV}lf7_q=+rGxy&gf?8Dz;U2k|V*Apsv?mynxsL{1`!X z*;>SW;wtKLtIwlHz1e~)v=h|aR`2Cn%fqPVq|iinH?y%tQzX zAJxx{+T8Hm>-OO_;b5LQeU z?w(U2aXGf@j--6A7e2{u?Ftte(Aj8RYb@~P`A&j!p$V6DwP+IC=8h(A-}sc$l?Y!8 zUxvlEf3`jbqT1z;17`fh^f?_gGs4c?x8@*X`jSb)&{Q@ii#n?C_N>GaleFOwSA)$d zJq0Z6=uxqdHkUNZSry~kyY!lHI?TL$zmoz6CcW!SJFtbIWTVclV62lBM7~tfO&rcl}k9!s3_; zb-tOoEGjQwaT=Fjo<433cT^|GMAe13f>7iCJ|?Q|1woqjT90N#{JB##bFp)C_k2a_ zgsTg3QnD0lXIp$T!NtOCBv^-rM>LxkK$$SuU--%u?ErW!arp<*m*&$zR8L3je!VxW zGM{{Ou$CBUXZ!0bbH82mf^KyLQN*-c)b-GUlAb5**r*mw3%wq*Wxzk%7c<=~juB=X zkE1XZNM0S)HJ~j)0L_Imjdy!a%=;Ba)5THQt1xeu$FJ0Y?b*gbXd2lT#6oV%B|2T| z*Nd6cKljfs=z;C-%7FpDrwd~?Jl`wa`DP%`h~A=Z{4-A3+Z-rZF%|I5vgYrMHDr8# zzT?c*Txhb%VffQe3Le(1V`ZB(;tz~hkq|ZEpUNNg@80g^cDT7D;FGb#1w?)l4st&{ zSrEN1)i0hAj7(&eiybQHx#D)(bV!gV?{!YJRU@6HqijNV)O~_Qf|^Ds7mxb1I=I5} z|6mPy2~DptuvxYK(tY|mzXfa3<<$TJIFva`h2NC z^V{RLZ^Ceoz}x=(u<^ZDX)8CSO1?^89uApKbC8!z?PRKPLRH@kxoPmaZ0 zFVf04FzDai#Jjl@ntK;VtFnarw`gj-K^h}P9*eq) zx{xt=c^=X#nU{3l!XDuT3N~j;rJgc;sn7F(uhD+p^72-zq2j{cY0)gi~ak{G`r7o?meD#gb3wm49+d7;k@BhaUxr*m5tTrQo}Eo5$d zwy11`5m01Tit!tMPwK6FkwEk0Oye&-m-i2amci!(^)c-9ildB4dp=x)Uhv&!W{lSh zaO44{*hlLE>qKn^P_3*WcCZUcHSu!D`w^L$1R>L zPPW79V^N57ZheN*51B9HBCxi!!h#e`Dxrr-jnjbC&?N`J9(y)qVqr?#Y#U5<@L(BC z@VV{WG%F9;I_3a~DKH>$oba8imYeulnKN|dlwkpc4zPDp^S#4l0V-42-SStcSN;y2 ztbLb)tK+BnHTWTROP;SWeQ>5SU~S6$5WR%xz4s`Ih!U&!zE&q#(O37;dvCEwi0C4S$YS+qD~PsA zWc9Ls^Zn=j^PO|1otZOpXYO;K=RP;V$UuwY0q6l99v+2`w)#svJbXdmSd4@S*lx{j z@dG;HzmA4Z#&=%r|_rezH!_=k1Qi|>1=^Urp6ic5{OsP% zbC}XrO{e9cWiN$R<~XXP)kl_Ur*oSbncE62%&p3m?6>kiXz1v~)MHvTXj%}$Wby80 zRcUEDMYvuiB5t_OcYP;r#^Am_vGbL{!{Fz6&$m}Y$G^bp>-j;z@&WG{Do|QhRz|~@ zKQJ{p=_27mq^G7=b6@tbHYu#$Rv_(f1JE_Q0^aD7dL+Zek_d2eHMnl?vH0a;zx zABh_S=knJ{`H@S>h}sKiLs^;cFb9`dj?w8QUw4@3syA+a&0mJ+afBY0 z)#dX>$FVH@{uPgIPc0v~hiE>IExi-Rt*;hW=;bdiJ}yn`*34gw*1vpcIKrhiU&lGx zU~0p=^UH&&zMg|bRX-#s;v$OkqcBA;H9;$`nMp=Lh&vDXHK_DvzOw6vl`N&6Cr&cJ zyS0vgxch`(nSVRK&>O3L7bq9?ga5~2aOB{$^Y33>BHRk~;5)w+ve#91(`2Hf)030& z#qWd7hUQlz-M5=MMqh<&Wgai6y*MN5cuO~K4L^#zZ+iekY43f&JUcm>7xc#bh5x#s zWFvKdc%b7TkE8AkI4IAq0aBwtdfa?tz|)kfn9!hq&S1Tca|_J8Ej0A5b#BC)S+vkK zy-Qp?xQh?*u-4I0uqUME4TLz%RWaww7k!P40;TiSwV6ENN4+HK|dv0&L6ssYahMFwn z%RM%f|6#oIIjft}1@-J7)d&MA!Htn8RkEP&k=vo1nyg(Vi^Mw@K8-O%IWm?f{o_ZD z&{86!`}n#|eKhmLY#h#Q0|BFgCJ~YLRPxLrhT+6iwgqyJN4-WqhEm}YA7pt2YxD6T zSs7qmrCRfi_mxM-Gy+ZIayK;+{iexCLRi}KrY#-hldDN*X4n~%MG?2d1s#T@uMs(% zej+1*Yc}#j_t+W99s1e{Q68G7m(-iGp`j<$r!(DMJ(pkoWj#KMsEX(PWtEQH^Z`JS zFx3@lf3BoI+knvE8h+NSv>S*co@kmm7r|6sh2lHLuTC8 zk>^WCMm^xopYSx%SFiu;Z?PvRq}OKJjpu%)T^M>E!DsP_JaW_B)UL;e76$>+rlfLu zWz_lSiL(<2@6|JjusF(!dj8JB{WV6gh{TcC$n`Bg)Y-pZ+>Q|@C~-m3`;~*zu!}MB zC)!gPecTw&YIS;Pbo)+S1Hbevnkqdb6Se(E^K8{sJQ4Fzgcs~f->xSz(7V<;{lS3I zSITVsg~(di-mjoU@1r#&_5*)3LLWJfq}*y@ol!N-Id%Xi5w5!QJ8pL@nz zLfP>{=fP^+LXkd0iLKfDr-xV9&p&u5CEEZP5bWE6{6#t zBg>SPYj#}(E0<6qy0T_nfWLbG@EYasl4|o{ZwtVu^AULS1gc-5Webw6G#+F#Ohj0) zSWLNg-3k#D3IDd&)YT^%JA$s`Zph%#L>%A6ihHhk-*z)w@Y>zJmwE*dSjuX1yT&k_ z;QBwk7G&~e(BL$ZudaMQoFRA z7VmmWW5LOaE(>$IzT8YxWr#nF9j9o&yrn~Q6P<70DOSA&s1&<^(%yC5!FHBog68-r z0K&Ul3k%?6mV!VGB(oFx)X{aEQT6=w=&;A<#ic6ZCr3$B6>>0kqfhH@%O&BI%6nEA zQ3}?X&F7!#kYZ+s3ZZoi9i;O-C1rDSc6pL9n@^LZA(wVx=vB zNXrP%FTMr+;sJDZn0NHE3Ou1w&JO?_RnrW9tzKd>l!s@aSt9GDRx9_LLRIIPr4U2% zZUm0!^2)RBh!G89K2Da|gC|B{%JTTE{KTxie(SgJI~UiEUQ+=bGT}j4f3f=dm)AJr z9obJ*Oy3@6t(+SzJWt>o1*m~ug}U};uzf9rD-C;ALj6Ls9(^lUCA9)-JKVB{KXpX9 z5wze|^PDFXA25ix`v{qjj}BOaQ!HN7&v`KiDAq}>d@mz&rskz`%8w6_8-5aP)KE`i zGGE$h6>lm4D`($<0%))3RJcgegW<2iBB!3S-NRq*I`2QO>+)5OI0^pp-BZl|-$J>h z8UE*juXi`FZKGAht{ruPf=_{ku8iArw0Lg|^-7 zpSx*0oj{6NGpAA#jCNBQxtiphYmncIEe{9mo?u6{()?PDSG<0(g(lW3^%@@)OZG)j zTE(5w30WmvqX+n)Q|p9WR$@u(4TzC8Ooh{~U6+UO*_gkk(vj@a?!$N?Cg$C9NM(K z(Z}f1Yx9cv*(CyMxMt&YwbA9CRO?u9oaH#xs-+;B5 z$$aq=;qPme!M11<37{DwEO*`Cnf@?10orKBKK5XM4^OVQ4(F-p5v=nQ_P|zeCkS=E z`gpOOSoyV#=Ym$sLr=Swd=;^Uk_vFVYkIO4+FIuKe;* zloAx_BDo1t}Gb}Dy7lyuPMK%(ZZis0N%_KY97 zk9U7|_JWe395dOpn%%UAC8V%`lOdFd;c7(b0ox(+)<;^C7*v~g946C{2Chj>pzCF( zSNdrm+CWMmg}2zm5_75**-%*WNdItzCx{ zT}}YD=qGNQ%tID(tfKrEV@`31#B78c{V;ep&v4IEit{Ot){IhhzwyLs_{`yQ%v8@~ zd}l(f2$pcc(Fq#0yWUE4=$mi1?n)PF8ME%RwJ1Y6^I_kO)2vm9+$7X3W$zTmzJ9f1 z&u_h&h}keSEMTw&$>q=Z`tRcb=ar{tRqLfBf+hwFBwv*D?X< zXcJGe;dH*s72n1?i8!8#cnf0ew`1w1zV-q4|17P4FGQzGZjAO%B1B@}ZT~MZ$WA5N z&3(arJqBB5ao+l!+uV$jQ!77IAjOs!p_`j>&3*5iX?u{W*ZiZA#mBXm*L}5Nwth)) zCcfc;`xSfMJ7@+gFX!&-Gal`V5^g{+ZCMp)P3Tn+-eReL-vbYwq}qsl7j(8?aj`dB z7XL5%n>-|F!QE=9a1ssCl&wx5R2}%4O}e3Gt*b(<-RneOZL4-HSHyUAqS?yxMD}I* zKUTsd!t3>zWbm6126e2o|3vx{;Yj{0Ng@opOHnKQ=Hq6eG7#PL_umAC1_b7s`nsyR z?e-u^I+Rl~7_7fo_})d#mUm}%AFsp3C}eY^BUlI$0s@rawWYPnX%MZVS0!(7u<q9ONjusP>35!T&niXWa>VBK?NXX@w93SO2|lMb+i!G z^*W*LJb_BTkJnMNWcd8sw{iiR)sbAkI}Z0=4GZqde$r~r9UOFa_=5T*BO^yPR!M4B z4QABkl}cqd~4Czm#`EQnz;V zc;TEwNJ8(1`2du;LbP1OqmoEZ*Knl8>qX|%K|*77w1gC0PyueO2N0B+^`V^Ft7&V1 z_a_69L*fv|;i&sSVAh73Q#ZjueYe7Nd1%H?;Ud(wzXqg|-Pze5B>$|uaBPeEO|&Dk z7)h1ZyG$xZvd$D1)!{t?AdL~SM0(U|`{_dLu`Ap<3tPzQ{WCO|a@}|B-T?ZhqORI^ z*bnbh>{+F%!3p_W0F{l7<=Etf;cF!2Ln_`44F`FQy1dUn--pR-S9Ltpc z)1~*5E>4CbHK!=1H&lwNi{jMJ*XsF{Z%LZ<2i}0#MCrt7Ma*EKudr>otvH@VOAtJ@BaKm zLCSVRqkxl-d#T{yUV&EX*UOXG_o31hDGKidx6%iXbFx*ki1fzCzXtC7)uDj+6uH_& z6h4;veTPE1AdBu5Kd>^8G`9pRPYRS0@kabJ=eJJ$i4i-&=q-AC5t{)14UYYSj;S`# zRS^l(N?8*TRMpqvJ~&+3aPk<0N`IyTRQT(UJ4T`t&Vv-of+9hW0x9D2H(f0T1+-_J zA|&_JkI6gRWo+G{b^)gP8vOQ84(YZ2W4%0n#1z}>R}mdE;LMJ7*AzM?tSg=e$Qt>m6>T8|0`9~0T zLDZz@OqRajGdqaxoEV}ndS&w(97*$Z7zfvaB7m+WX5`hPyN9( zYqbY(6F@IT(Y&OGr}o z3dPLaI&MG7rq?R<#>k_vuMwVzv_u8&(k<7`xX^!F8KhOGsnQB`Lod;IqvCZWp~)WM zWUcVR{6xnqI>3B^ayVeaxZAX;mj#DGv@Jnq%HN*C3<1BlkR$w6?DC#TYFzo#H|ugx z63ix9n%Hw{Izn{1>OIGi$v`DyYzNAgXk%npO}s$#L_wq+`EWYd*mk&HC0LWwQ_@qJ z`rCW`s(e*(kSJwi1S29VL-pU3hEP+grU%z1^@FNw8B$R*T@?hkm4l1~J?4bZr1t`% zZ@-J}Bz-r^xGUChrK)|g08rf)N{;GtJDRQAM5mb0pg z!$Q!c@01c&KC{&1O^&j0X%_~8crvM@t5Vr{YGoK7glNo6^g=~}ZneT^^2I{lgnDcAXNCmFF%vrHrhGAp% z);i0}*&c9oG9M1J+^@^WjAxYt3#Xbyhwk&6fc;O>)!R z!&dl|5MrQWNS`w1Z)$d}F z`5{u*>&GKj91a7la)%<0d;;g)jQm0ZaJ8&Iq_(6i5b+A6CL}=Ta@yg9Q8j z_>_Du0n!NqIg63XTrw%|(x5F2V`0U}MJs@L_?{ACbJMv*tlm3()DYSji6a+}b@@C} zwUzGr?HPfd)nplNzsan|Fu}YjR@0s53F{+*hmjlR+d2t8xBN8UX@)77Le3M%vU_TI zD_4BUW{c{Z&-3q>bHc!I$K^)sR-)(lG3r@(& zt7NI;oH-W4*=6#}*k>og{nT2)AdnIjZW2hxqSVJaIseeRzd90C)K6H3G~3Lkb; zNLAxjUE2q7#Ef*NZYmiBO8uH*EeYebnx^&2QVB&QA#1;s2n%NC^^_fVokMW95 zy?fOjq$t=FqLCEzQbJv(K{!rVJWspt&THBFT}<%uPJHG|pe4=M`YJD2+rYm-Jsfq* zxo8ZSiDrF9Ht*STRceB78%d{IY%GgqM^mJjES>z8sYw_7^Q%Kk-iUQ3w>z96 zyV*6*MxB-los6`T>V}LDOnHyxb1Y?od=W4m!=ETdh$ge5%D?ykQTl(1AAs4s^gzl* zRGi(ia0%t73d?l}Lv2n(qRp{971MyLCcu2+qbaHc=8C>ffA9W^Vx%f~MM8nOC!UUm LfqIjw4eb8_k;R?< literal 0 HcmV?d00001 diff --git a/_images/micirp.png b/_images/micirp.png new file mode 100644 index 0000000000000000000000000000000000000000..9ba0c9d14622af011cb9554216bc9f24e8d53b24 GIT binary patch literal 514 zcmeAS@N?(olHy`uVBq!ia0y~yVAKJ!jX2nV2PG*uqS!z*nW`3Trp1GchjzUIBNkOrdzJ4xTfnI)5y1rPm#W|oMoCO|{#S9Gm zi6G3l!hU%s(5ie-7srr_IdAV6dNDgnv^~73I-w;Z@|jjxm}2XLP?3Yy9P`|p%r6Ar z$WSy>lM*Rhd*|+{jkA9~tlU)+|J7)7&bF7k)_F59ZduCC@Mn4gVi!*&=u=4)^+4Tj@;dP|8MDk;viIxnWL8+s zf9?D0ZBO_b)+k2Yjy);M5b3<3tcmqXZpon{RhCz35e^dTS{x*5H|&#}@AZ!1M3!7% z-(Ewmko=8tKePD+4&OfOwxK~n>~-j@KmRN&Y(3k>(^bDS{8?$A=sWH7B%oVwwAWbdN}29S4*zw^4$zKib!ZUEzh!PC{xWt~$(699U`!<+yB literal 0 HcmV?d00001 diff --git a/_images/musan.png b/_images/musan.png new file mode 100644 index 0000000000000000000000000000000000000000..8b4f66825813cebcf0bf4ba100b6b18f3db56459 GIT binary patch literal 4950 zcmV-c6RGTpP)V>bE;lYTEFfrfbZ~PzFE4FjbZ~5MbZlv2E^l&Y zFBXG1&Hw-a32;bRa{vGjVE_ORVF9Q=r)dBH62nPEK~#90?VWjiR8^M8fA=l5r&3ue z0SSwQ0E+DU4r*h!iaLtgHe$m^6qgxobwFEeVNhsMN2l9v5E}Ol8fV5eZ`CRVqtWiue8N)xG!Kck)to-nr+Va~_c-NrH-sib^Md zO1A(iDk>_;qADyE6_rkds<2d4R5}e=tFQ!z1HN59KoZ4ti=v{U(ne&h!m4}dG1wki z0N<9a=@vz$ljHev6S$+t(=CPyvQ%M7l7wKzNdSOn^Op1qqtdD2%1@wS$ugXsdmki@ zOSd=|Jz1%+gocLjF>N-dQ4*ETj!<78KK6b0eHtZE0kTwK1&^NyAB!$m8YNNb?1)}} z_}KmF=V_EAdlBjzkZd?;Rw^v+czO7kx7pGtiArZj^0>pt+|grclq5TG|6>EHZ@LxE zcivBGe0D0V6BXfO!B*eQNEMal5#64qW4i-VK=os_CFfpv2>{?&{aRAvvr=IRbxl^4 zP~V`2HmIbG=yuCK^YyC5o=%u_3(y{jc6-wYL4eq32VIb#HhEM!FQUgI`z+MegYDK$ zKE~^X z5(I#v!qDL!TrvoSorkkci)2}Z8 z#Qb8av@elMLI4oz>g4@S7wR5+9Ndwk007U1jnEFf0^G?{@bB0K2m**!3n>tgo#*}P zYxs8Tgz?I$FkC$qLZbuP%lm`2S|Ra45Un<(Y&Z_?jh}%sngB@zTh<4B z7eV3$fB?eTS_pOr!1IcG;C$n4*=PUv+ZAmf1o`tHf$4_pQ@zzmL9(q{gT!$-edRA@ zZH3F0z%Xe-@^kP4obP>r!2W~CopTrHE=Az0YXDJ%cEDv2><)Ohd;`(pg!#@p;N83h zu5}-RuRa4RKM#`I1F#H4hXW8|FGuOZ0todDG5Zt{0;1DGJ8&ROH{Srs?Lpw^F^G+J z2#t;4j+KMyQjFpie*$GRCjED+B*yl{Q?hV|+<9}6JL@-)L=mpF>*4aAo+o$9J0(j!)Ub3LHFy##dGXqJaD- z=0j83JJqS$6v5$8v~lGp5-Ke3x7*;|@(n1h4!&KxA=HGvg#H~nh+ zzuW}P{r9FiRhuH(or<==zWs5>JOBP6Tx&m6nEG+aV1v~2>F27#YGV{Wtn<6h{$0D% zAx_5Q-Lx6O%G2ojx>A`tKUfFHsx>g(a6R%DJgVrI0$f5xmhvv4P}}qa=WCPvv3CG6 zhx>WBLq{M5gR(aN-hHT>|9jZ~ydrsJmEmxQkHGW!m+2NGtBAI+f~S6l7zn`s!=5xr zl=%dYm&Z(Fx)8eH{&)ibK#KC0B@^VGvcif~QbGnPEFp%%k^%voxqTLd#zsg14)!%~ zpzh(v;Q!~2ju)_bm zLGX1pc?3HpS2xiLDj9{PSQ1Jc2mikP&(JJEGl(7!>K^zJlUvn1qi=Rd9!~d>WLT4(0BS#Uetc=+gSrW#- zdvA;9mVExWySysRBb{GLJKuhvxHp9DVGXlH!q}@lul~*8e@Nlz9vBBzU)ZX&|YG&UPQ^5vL{S-d-e)Da@YYL5a z)ckfX>X$5oB#IC{?u6&4B*yu{-$NBtBJ>GgeI~||F!B8kuNC}ze#E&KUzTwE6%Yy^ z@NN5N(|AD$=Z5;WH3f8fHhdQT+ayT>cl0>?-)|51i!K+cesu%vtJZ+8Q|1HmwRLd) z&p*PS?JHNK@#R0a-5+`pBYC~B&3{tX=G(ple2v^alS~XFIs4$lQsBq9I)4A5NG55+700>a4Su^L}l0oS?@6=SV0JO|p68*cOO*^9b| z9+QpJjTjE|op(Sxd}z|u2P9sA6y#*3F+{HqHFwU*nke=5gz3>8Ik(LK+p`C>Lk58m z0{`B9;H%HT@%o#x`e7GfOM9d1Tk%6%+6qaM5G+3dqSu2dE<(f7R52k02 zgvunAf}o47iZ((BEce|5`>HiCOqq<_IkOT9)Dkphr6_vwx$tM#e}AOz>_lOhGP&8U zeC^O7aDVhM0Kjzfjc}jeDbo%f*dg*oLnsQCd+&yR;&@Ox9oS2I#T~01H~^lFpPfIx zLeZ}qH4={3-VA>(c=|~grc8>P!C{y*0bSO-3MxMjOpz7&^B+ac%-OB^b1r%)a}Ej@ zEd-UHCu?VW_Czo$DxtaJf)@xYEJ9IWlhAMgK;`Bt+Gwj%VF7?)$|M-3OiF6r){=9} zP2f&c!1Kw*4!K@uz;N}{X8U!+n&RS&*GxlT?>>kw7j#31w6kQ*qrI$u;xQ3QN>kQH z(XY9@KeR&z;leJse$42Eel|`2zTsoFwpi<+3kqO;ere2y4%4FqLR7iwWbSuLo^LwJ z!lH6=lG2VH0cA9#TZD{(E$ajApyn+lIxi3AId?%k*BJ6yuKp_^ik;%e%J%F5>++?b za?LUGB?%!YT=Fz*3l@ScD+OiFY0><|l==4{Q(^m-q3HQ#pbM4mBLJYZS`dT$w@M5x zu&`P}^pcP+ifvt`1IiFvVMRV^FBWoV-x)JPJQ_=cuO~YCIMYd#uubRZqsy9=Da}o^ z+L-ZPM5_hSXw-LJHbegWN0iEnWr2tkDy3gKv9Xa-c^S$qUlP*AMX5~FE|54DmSO4? z7_Yw;psA3vFODChvtyd^FR(6Oio8c2f_~D(bc@reA%uX6VP%T7SUDzHsbHovSXcuGz;xquSmwC0}d+ zb$;nbMJ)l7ap$CDVG)`JmDA)8po@!BnWkMJh8TVah5>tNFA#Y@~+~mhf zW=E%^h}PNw!1n4Hvv`|s=wNhtV>PTVEeG8tbChnXn6A4v-6CWiRMZ2IKEFM$z2b7@ z&YjbIHpfLs;WLYx4MmA0x*A5T-)=N1=f_Aw(^5)vS-(`LX>(%jZpGU2z5t;p=tqr2 z*SFTdw{1HD`wzhLZmB1XE;%BnY642I$9*LGb5F_;>FCBnfnJ5h$YxM6V0I znBam_kzvBiO{P~*(3V_K77K#M%iF$)AR*9Co(RJf)o0b#MEkHPOH({i?(A7$`;?+# z(KCwo4z>kEqlsA?J(JN~p1koA9q-w0J}f|93L=xXz+-KVvV9US`zWIk#%Wi)TY?K=UAg5j#EpyJd;k|arX)A{;(@Kx2&^bNhnNT{s?SO!c~jGE~6f;)T^T=@w& z*1Q2J5CC0d1!XdU%Cm&3F?zkwl=T63tQ?Zx55we%U`u-==hj;wdA;E4>OdI`piH5l z(3Wo5t0YHsej*(e0BM*o4&>Rzs9(4UlsO05VM8H0oS~Exng(HL5Un=udk-}I`hx9K z3ZmD8((6GNTR~VBy5YmXbSZ}DbiwiVyP$G&Lp#1K1JCDQ#w^p!mi2*Y`gPEc9trn` zPZ2y_1#SO+@b5nmN>gH4=mrl$u&N4#Wx;eWf!JsVF&H4aT;V$Pw6zeF*^FSt$+-80 z$~8kjejMl`E1Yk>({z7g#Aqf9(P|TpNm*eLoeq-U52DYkB4@FbC)2HEejUbYg=zYA z3CBf0A(+BKFolIppD*beTSkKcx)H;m8!-&VX;*`AF8A@BCLgjQKmsFPXsdfO6Bisi6j$L3&dxL3aM_+Whz}MD+ z?a>|3u;72L1k<%ExZ}q`G#W4^-9Q)?z8yQE9Wn^?dAE>gx5NF>CotXEx>w94ldhMt z!YW+)AF!`jh5QANB_7;?#ImsHJmr@xQ=kj-K^Nr5?I#okr1;WFmDUse0Hn@u+9<}E zKbuPDK^BKaNX*24m5w9p6&96eX;JMh z6_rRLeORF+>+DSF>MUfX!itRNQ2kdbt$~hkC#1XNj!G+>?wL$vP7bNj7uty>Snw5yXEpOp$LvX~&PI^0!S0ih`5&iYNd#mHJL_sxZV z+-PX77?9NXtXvZ6Mvn>~t4l%^mCWTrR6mtOlsk~63QIqxNnuG@Rz5~WKlc4O0Uq}Gd;T{s zc98N{HuE=xIQs|M`8wff+xdHYLi|15?3n|ceEr-YUM~bC1V#CoUH$#N{iKD2UjN?& zL5Q!55LL9~1a=WZZ#8p292`=+e>ZNWe1#hh4i$|$SkWk`5M2~(OQAgfC2~dfGAje{ z0IaNVU<^>!d#C(FKgWuKk`jE}|Cq|@D!}}a%+GU2<>@Sh@|L$T*b)e)ID87E1Ol@` zO2Z;j+anAsx3?lwdFq@$*x8wX_Vsmoz^kpt=epq`=hm$s;PAwhl#~g=|AM+7O-)Zv zt5aFo?e6Rp3hxkUs;X|kQ#3V`mX_usR_CjMC!>5_`^N#1%d6=pJJ@S3;r$=MwaM*! zDjX59tbpq5_DVhMWa$LgvvfTkq0}y9539ewe+recF(H#o{Q4CF)!u4O#=(o$Ms~#x<|F+;*nW(fj-u`s) zDkIzZ&s^I4eMt7vT?tQtM9Hu6ai2-GJX!)1zO;wIIJupLiu=^X9_3d3YGvk$Zck+R zOw#28WY(hbQ`@<*JNhs3R@G;Oh`HNCqIipsJ2F5~!08clm!_!GBOnhq*ch=%F`wXA z!5bPTh+QvJzUx;Iv=jz=7=*G+6Ye?5;xG!o)i!YA-r5=-JYc6ZVFpIlbGM#~>Q_~% zk4@Z^gsH5RbtOo`u5410M{DTV@nmHkUs?;{ zL?IS8M{s2z{9KTqpNzuqK|NQ?ksT$!vTHNPg3DIJ8Z}k|3DS1b z-xa`B)xgW^u~MBFMMv!JmIjKW6Hr(%ocs{0lqq)tHn;*U1KvGMj}fF7Igif?wNk-X_Qn?J}T zI2`*I?@D=Q_3ZIz8H=)6TU> z&l-6Lk}Y;qlX;EPy08j;pID6=78~H+7&I zL5vG&y3xkMA>w-H<9N^S@0i<8@o}b^%mf2ei`v1BZPPv74?3D+)2xh-doFQ*ds*$* zOx+)I8QplW&^8}}gz2i8lFcs$$#3lV4rpI&%*c#pJ1|QAcd|_dT)bvWyLkY}Ae{7o z*zTf)1R-S&1fcytczyA|`(+(CjZqP*7ccxoF8}z9?bRk&>MMHBw&PIf7CpN(Mk|zUsg*I)=CR`Q;9(Uhy;#_W1n#04!eEb?DVME&ruDVSsaihjwRA0{**0#om~`p%hS zD1Pa7b67vr9#Z>TcooT;Y0sb2qtWTG}<~>ohiMgMh zB%C|SA~;;J@Q8f`TrV^h{R0I zGvOX}U*Kgyv$0?X$X&Br7t^@34u5@e7czx{8s~{EjxqZ7;=-?p#K;wo z@wr0-a4DhL^S;Rm47>`0JhFQs{g_MBoIL6`+!uA`Py>B+*HLkz!(63>4ZrGBr0~mO zj!&PNf@l!?(40eCxvY8tXd4HO#z?DbUClr^%5(X0oHOV%sl=nf!wTQsNCGsx?J1A7 z&>g9~NwXYv1V1uR z>C7&}0|ELlca@9V!Qr$M(=Z@0-g5IZ))us?V<2IjM}6HXtr$5=i-*M5!**tBs&wB| zFt|X>ZgrjZ1)}D~8l{_ajrg->?3UKEZs{0-w&IlXhd{vT$(@kYwHy824ZK z8_AHKzs8IF;j|82ZQNg(A4#kxuAfdj|IkzuG=&aV0v=FUMj95f)(71^N-BD3e}KqP zyJLa(-q3yZKi({f2$xD@Mf8nRBcf&g-Nr^C|rBEeZV(^BZylXBF5Y?C&jwc5mF& zMG?Wgvg26plXUQphkou?S`UJ<`?U842$SKU45l!WYwW(&p8=$3baL&A=y1N0|!$eQ~j2 zrtT8C+K0!th=E4=X_AO0E7&g$;Y*o7l)j z#`dl<6XUhJ(c6~bEoCEPW#K$w$JRtasU#J2S9R)7vc9l8`3?M0Ku}I!trgb>gP)@l z*>Y3Xjl5;ddH-YK%bk?KK@Ex$QXTB$N=k-d1n`FGy*YOMN7GBvur#tce;4+#Ao4+Q#J%4}o1j ze0O;OJ4>jD-`qlAv{M%=PB6|kie0NJ_ zhP-8eYAPE|^c9TB7@lY`>U{gTW^_{$kwV@KXi8;B=?J~tsex?kgjFNmPoUx!H{{E% z1HKpL1XP-}pL~3y5cyfXta|CcqG?*q z`-u2}m+q2DmX=Aj!pzb|YPA*)T}KZ9>Z}cRY>7jls~3|9Oc9dL-Gs_Ffu4u$A?D~K z&C7tffc$D~{O|bN(m&5VI=KJ%_a<|^2w4`AB4(fXc>n4l!E4l8x&)w9ZfcdGYEngU z6l4WMv)Dd#QedsU_|{LGCJute49DGaF!tRumQOJ1hed=P_QriWTrk62g0!@iNsP!A z8>6Qttp1wxSy)UY`D4%0LHgD|%A%bmCyOOli<{$9JS}bhZ3~C1Ps}G6R+(7txODFS zKT5NYKgQ{~c%dp*44OheuJI=iMI0aP2o6o+0~wxdrjxT`E|3_l`G2`>=Pl%%?xrMM z5kYO!`py-{48Jh0N;Pm3^oU!I=_^y9YZn&@i#(5Wx3GAOdXXNq5> zkHX4YL@847JIdZ26^B=@0oxR*?Ojn%uppdM5T*Nv_?cN?jR^oM6+*Bmfk-L&Zm7$$ z{3Wmm7>&D~I~`wTu(*V_bfV*igv34sD3zDgnlgIgOEeo8TO<<7xZ~fSQ zZ;q^^yYLsO1(~6xnw#6SRRiw!$4pZ_@%s{ziv%!%I6Zc{aEk~1%3J>q;gW^NgWKQk zzp4hILg>FbvZ7N1?e^xgj*5FS$09x-qlSDGw6wp<+0(=Zpn(F;SUQZeeNOgwZ@;oS zj@zC|Boiw)#HIO%!<>bpP=gE`>;z@2VuYVc$qy6n?a`6XF33P+j8CwB`DhdpPeIAG zx{|~G=bMny$OPx-tCs_FM#Qzv$MqIWOwW)HM1ymt#2tn2Nabp>4!Tc#XAXK{CLxIS z0-jFHGqjw;MR?{|m|hp8{eW>G_q0_h^uj zG&o$nHXFR#qbZ>vL=jzX@r-1l@ao7iVv%<@8VvmDx2Y-=~gz3^-OA+rB(S=?73SCj`hGD&}Cyul1`7N^OSnj z$cLX}A+mRdBrnqO%@$B5i4%))az%;jnBx+Z#%Jce4IdEx!xpQ|$c74oVzUgEf}oqe z)9wc_fW+(XQWqnxFFgi`r0bu75Z@sQ3^MT>O`6_TeqtZ*(Ncey_Y}3X5%yxAT13lQ zTBHj&)eMSC5biL9#(X!If_}@kR+032rx$+~)JFSn(s7GnV=9db;`gE6H@le%o%!zO z+S_Y)qS2WOi4ZSerTeJ6M7|^f1u52}!-q%h<`BEoNj|OYWXJTxk(UetBb7O?F%DhUfr6{E$u#`w9Hq!#~ z0G2iqQ$O%Y)7;!q{w3-3t{P3Lqf}R5|96TTSqh#ZZoMU7ZjDHH(Q-8 zWgD7h_quFgiL7S(y!u6k*@mj{W}E8ButLKt(IpL0m>C3y6`o{wZq!(Pw9(RH6jvR& znE6tq4WheM%Hgv+e>$NoOe6e8Qs9-BS7=fP`na3yUS;p+RQ8#?Hpf=1&p6#^jua+> zH8}WH90lOxD$F;9BZ~RGw9kY2yW68$^Xiy_GVPwn)4P?YQqyZ65KmJ-T!+ytaXkym zFZlVsM$()=+nERDtHV_2P(Ki)QCEHguBQBIpWt=&uK$%ahJ%_bsl@-zjsjZ++YkTv zh=BP4`JKT~vFm~Yt+Lhp!mEA}UqGx$ZE4#Nn2dVaZ!J~ff))g5(JBL2q~jSaIJF*} z+|jYgAG}++r-i3^_yU&k-dV;Kr!);G7R#g@St3*pUZDWRFYk*OU4CUXHSaT$G(W@8 z-=)eA`s@zkILe7a6RB-jHzsGve@i$zr~8g32btC-zIdi? z?D_kP1IUDr*!<0q@h!PK3?c^3n?UerD$V zV^|w6veh(0nx_#xIVB#~1`z@Y7tpsl>VgejjFS~x7Sy_AgI_u~&!fF<_g2NKXqLV+ zJ2`WShI5=;KToEZGEuHFS{_*=DI$WThGkTv9c+6R*i)vND-W#(7TC%wzT!8wo_@*VEX7 z3kvczpNh!(48a%Hh&%gd+;Dixg*Y7Mkm^si5e^MD;^cc$cioL@wdqD?VlHN?#J?}> zK(6fp9BzhO(ad0y_W}wv>tqZU((SDdE@q{p#va@Hsui4#(KetL{6(8&;!zC1JxPCERjzEa zOY-no#0^2zf3Jr>IP;7y_jvdcX*PU6oL8%LFRA3Fc{SiB_sV9BSW`pSvo9*>p5tR) zK(4=zmpx^6ZhpuOKq{f}3~lIk%9$z1j8vrunKnL;>8f%jxY?pal!!`^fewg`u*uwoNs zbmQx#SCd?|4Nr&}6X+`Yu~;ocQb~k@=#-2RJJny@CFAz6($=gJPA4Hb*Il1lMrm?1 zgf`+2i)mSc3}Vkno80K1!gW=9^{?H!!vN8dgmqyXvGvsdfB*HKlx(|q+2$dN5ZgG$ NQCHRh*D2XX{SO#LLhJwl literal 0 HcmV?d00001 diff --git a/_sources/datasets.rst.txt b/_sources/datasets.rst.txt index a1a9272..de44090 100644 --- a/_sources/datasets.rst.txt +++ b/_sources/datasets.rst.txt @@ -18,4 +18,10 @@ For each dataset, the latest version is shown. :maxdepth: 1 :hidden: + datasets/air + datasets/cough-speech-sneeze + datasets/crema-d datasets/emodb + datasets/micirp + datasets/musan + datasets/vadtoolkit diff --git a/_sources/datasets/air.rst.txt b/_sources/datasets/air.rst.txt new file mode 100644 index 0000000..277d549 --- /dev/null +++ b/_sources/datasets/air.rst.txt @@ -0,0 +1,64 @@ +.. _air: + +air +--- + +Created by Marco Jeub, Magnus Schäfer, Hauke Krüger, Christoph Matthias Nelke, Christophe Beaugeant, Peter Vary + + +============= ====================== +version `1.4.2 `__ +license `MIT `__ +source https://www.iks.rwth-aachen.de/en/research/tools-downloads/databases/aachen-impulse-response-database/ +usage commercial +languages +format wav +channel 2 +sampling rate 48000 +bit depth 16 +duration 0 days 00:04:43.719958333 +files 107 +repository `data-public `__ +published 2023-12-21 by audeering-unittest +============= ====================== + + +Description +^^^^^^^^^^^ + +The Aachen Impulse Response (AIR) database is a set of impulse responses that were measured in a wide variety of rooms. The initial aim of the AIR database was to allow for realistic studies of signal processing algorithms in reverberant environments with a special focus on hearing aids applications. The first version was published in 2009 and offers binaural room impulse responses (BRIR) measured with a dummy head in different locations with different acoustical properties, such as reverberation time and room volume. Besides the evaluation of dereverberation algorithms and perceptual investigations of reverberant speech, this part of the database allows for the investigation of head shadowing influence since all recordings where made with and without the dummy head. In a first update, the database was extended to BRIRs with various azimuth angles between head and desired source. This further allows to investigate (binaural) direction-of-arrival (DOA) algorithms as well as the influence of signal processing algorithms on the binaural cues. Since dereverberation can also be applied to telephone speech, the latest extension includes (dual-channel) impulse responses between the artificial mouth of a dummy head and a mock-up phone. The measurements were carried out in compliance with the ITU standards for both the hand-held and the hands-free position. Additional microphone configurations were added in the latest extension. For the third big extension, the IKS has carried out measurements of binaural room impulse responses in the Aula Carolina Aachen. The former church with a ground area of 570m² and a high ceiling shows very strong reverberation effects. The database will successively be extended to further application scenarios. + +Example +^^^^^^^ + +:file:`data/air_binaural_stairway_1_1_0.wav` + +.. image:: ../air.png + +.. raw:: html + +

+ +Tables +^^^^^^ + +.. csv-table:: + :header: ID,Type,Columns + :widths: 20, 10, 70 + + "brir", "filewise", "room, azimuth" + "phone", "filewise", "room, mode" + "rir", "filewise", "room, distance, reverberation-time" + + +Schemes +^^^^^^^ + +.. csv-table:: + :header: ID,Dtype,Labels,Mappings + + "azimuth", "float", "" + "distance", "float", "" + "mode", "str", "hand-held, hands-free" + "reverberation-time", "float", "" + "room", "str", "aula_carolina, bathroom, booth, corridor, kitchen, lecture, meeting, office, stairway", "floor cover, furniture, room height, room length, room width, wall surface" diff --git a/_sources/datasets/cough-speech-sneeze.rst.txt b/_sources/datasets/cough-speech-sneeze.rst.txt new file mode 100644 index 0000000..5c45a98 --- /dev/null +++ b/_sources/datasets/cough-speech-sneeze.rst.txt @@ -0,0 +1,59 @@ +.. _cough-speech-sneeze: + +cough-speech-sneeze +------------------- + +Created by S Amiriparian, S Pugachevskiy, N Cummins, D Hantke, J Pohjalainen, G Keren, Schuller, BW + + +============= ====================== +version `2.0.1 `__ +license `CC-BY-4.0 `__ +source Dataset based on the publication of Shahin Amiriparian: "Amiriparian, S., Pugachevskiy, S., Cummins, N., Hantke, S., Pohjalainen, J., Keren, G., Schuller, B., 2017. CAST a database: Rapid targeted large-scale big data acquisition via small-world modelling of social media platforms, in: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, pp. 340–345. https://doi.org/10.1109/ACII.2017.8273622" +usage commercial +languages +format wav +channel 1 +sampling rate 16000, 44100 +bit depth 16 +duration 0 days 03:02:29.436148526 +files 4310 +repository `data-public `__ +published 2024-01-02 by audeering +============= ====================== + + +Description +^^^^^^^^^^^ + +Cough-speech-sneeze: a data set of human sounds This dataset was collected by Dr. Shahin Amiriparian. It contains samples of human speech, coughing, and sneezing collected from YouTube, as well as silence clips. The original publication of this (possibly then extended) dataset is the following: Amiriparian, S., Pugachevskiy, S., Cummins, N., Hantke, S., Pohjalainen, J., Keren, G., Schuller, B., 2017. CAST a database: Rapid targeted large-scale big data acquisition via small-world modelling of social media platforms, in: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, pp. 340–345. https://doi.org/10.1109/ACII.2017.8273622 + +Example +^^^^^^^ + +:file:`coughing/6hw6_4eb_hq_18.41-19.81.wav` + +.. image:: ../cough-speech-sneeze.png + +.. raw:: html + +

+ +Tables +^^^^^^ + +.. csv-table:: + :header: ID,Type,Columns + :widths: 20, 10, 70 + + "files", "filewise", "category, duration" + + +Schemes +^^^^^^^ + +.. csv-table:: + :header: ID,Dtype,Labels + + "category", "str", "coughing, silence, sneezing, speech" + "duration", "time", "" diff --git a/_sources/datasets/crema-d.rst.txt b/_sources/datasets/crema-d.rst.txt new file mode 100644 index 0000000..35e03ae --- /dev/null +++ b/_sources/datasets/crema-d.rst.txt @@ -0,0 +1,96 @@ +.. _crema-d: + +crema-d +------- + +Created by Houwei Cao, David G. Cooper, Michael K. Keutmann, Ruben C. Gur, Ani Nenkova, Ragini Verma, Samantha L Moore, Adam Savitt + + +============= ====================== +version `1.2.0 `__ +license `Open Data Commons Open Database License (ODbL) v1.0 `__ +source https://github.com/CheyneyComputerScience/CREMA-D +usage commercial +languages English +format wav +channel 1 +sampling rate 16000 +bit depth 16 +duration 0 days 05:15:21.404187500 +files 7441 +repository `data-public `__ +published 2024-01-02 by audeering +============= ====================== + + +Description +^^^^^^^^^^^ + +CREMA-D: Crowd-sourced Emotional Mutimodal Actors Dataset CREMA-D is a data set of 7,442 original clips from 91 actors. These clips were from 48 male and 43 female actors between the ages of 20 and 74 coming from a variety of races and ethnicities (African America, Asian, Caucasian, Hispanic, and Unspecified). When using the database commercially, the database must be referenced together with its license. + +Example +^^^^^^^ + +:file:`1001/1001_TAI_HAP_XX.wav` + +.. image:: ../crema-d.png + +.. raw:: html + +

+ +Tables +^^^^^^ + +.. csv-table:: + :header: ID,Type,Columns + :widths: 20, 10, 70 + + "emotion.categories.desired.dev", "filewise", "emotion, emotion.intensity" + "emotion.categories.desired.test", "filewise", "emotion, emotion.intensity" + "emotion.categories.desired.train", "filewise", "emotion, emotion.intensity" + "emotion.categories.dev", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level" + "emotion.categories.dev.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.dev.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.face.dev", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level" + "emotion.categories.face.dev.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.face.dev.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.face.test", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level" + "emotion.categories.face.test.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.face.test.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.face.train", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level" + "emotion.categories.face.train.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.face.train.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.multimodal.dev", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level" + "emotion.categories.multimodal.dev.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.multimodal.dev.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.multimodal.test", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level" + "emotion.categories.multimodal.test.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.multimodal.test.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.multimodal.train", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level" + "emotion.categories.multimodal.train.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.multimodal.train.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.test", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level" + "emotion.categories.test.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.test.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "emotion.categories.train", "filewise", "emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level" + "emotion.categories.train.gold_standard", "filewise", "emotion, emotion.level, emotion.agreement" + "emotion.categories.train.votes", "filewise", "anger, disgust, fear, happiness, neutral, sadness" + "files", "filewise", "speaker, corrupted" + "sentence", "filewise", "sentence" + + +Schemes +^^^^^^^ + +.. csv-table:: + :header: ID,Dtype,Min,Max,Labels,Mappings + + "corrupted", "bool", "", "", "" + "emotion", "str", "", "", "anger, disgust, fear, happiness, neutral, no_agreement, sadness" + "emotion.agreement", "float", "", "1", "" + "emotion.intensity", "str", "", "", "high, low, mid, unspecified" + "emotion.level", "float", "", "100", "" + "sentence", "str", "", "", "DFA, IEO, IOM, ITH, ITS, IWL, IWW, MTI, TAI, TIE, TSI, WSI", "✓" + "speaker", "int", "", "", "1001, 1002, 1003, 1004, 1005, 1006, 1007, [...], 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091", "age, ethnicity, race, sex" + "votes", "int", "", "", "" diff --git a/_sources/datasets/emodb.rst.txt b/_sources/datasets/emodb.rst.txt index cc45642..0a2ca8b 100644 --- a/_sources/datasets/emodb.rst.txt +++ b/_sources/datasets/emodb.rst.txt @@ -7,7 +7,7 @@ Created by Felix Burkhardt, Astrid Paeschke, Miriam Rolfes, Walter Sendlmeier, B ============= ====================== -version `1.3.0 `__ +version `1.4.1 `__ license `CC0-1.0 `__ source http://emodb.bilderbar.info/download/download.zip usage unrestricted @@ -19,7 +19,7 @@ bit depth 16 duration 0 days 00:24:47.092187500 files 535 repository `data-public `__ -published 2022-08-05 by audeering-unittest +published 2023-04-05 by audeering-unittest ============= ====================== @@ -33,6 +33,8 @@ Example :file:`wav/13b09La.wav` +.. image:: ../emodb.png + .. raw:: html

diff --git a/_sources/datasets/micirp.rst.txt b/_sources/datasets/micirp.rst.txt new file mode 100644 index 0000000..8aec053 --- /dev/null +++ b/_sources/datasets/micirp.rst.txt @@ -0,0 +1,58 @@ +.. _micirp: + +micirp +------ + +Created by Stewart Tavener (Xaudia.com) + + +============= ====================== +version `1.0.0 `__ +license `CC-BY-SA-4.0 `__ +source http://micirp.blogspot.com/ +usage commercial +languages +format wav +channel 1 +sampling rate 44100, 48000 +bit depth 24 +duration 0 days 00:00:27.341591837 +files 66 +repository `data-public `__ +published 2023-12-21 by audeering +============= ====================== + + +Description +^^^^^^^^^^^ + +The Microphone Impulse Response Project (MicIRP) contains impulse response data for vintage microphones. The impulse response files were created using the analysis software Fuzzmeasure. The microphones were tested using a swept-sine method in a small booth, treated with much acoustic foam, placed about 20 to 30 cm from the source. Although the recording system and booth are calibrated regularly with a Beyerdynamic measurement microphone, there are problems comparing, for example, a figure-8 ribbon with an omnidirectional standard, as they will see different amounts of reflections from the side. So, it should be noted that the impulse response files describe the microphones measured in the booth, rather than in free space. + +Example +^^^^^^^ + +:file:`dirs/IR_AKGD12.wav` + +.. image:: ../micirp.png + +.. raw:: html + +

+ +Tables +^^^^^^ + +.. csv-table:: + :header: ID,Type,Columns + :widths: 20, 10, 70 + + "files", "filewise", "manufacturer" + + +Schemes +^^^^^^^ + +.. csv-table:: + :header: ID,Dtype,Labels + + "manufacturer", "str", "AKG, Altec, American, Amperite, Astatic, B&O, BBC, [...], Oktava, RCA, Reslo, STC, Shure, Sony, Telefunken, Toshiba" diff --git a/_sources/datasets/musan.rst.txt b/_sources/datasets/musan.rst.txt new file mode 100644 index 0000000..8e92982 --- /dev/null +++ b/_sources/datasets/musan.rst.txt @@ -0,0 +1,77 @@ +.. _musan: + +musan +----- + +Created by David Snyder, Guoguo Chen, Daniel Povey + + +============= ====================== +version `1.0.0 `__ +license `CC-BY-4.0 `__ +source http://www.openslr.org/17/ +usage commercial +languages ara, zho, dan, nld, eng, fra, deu, heb, hun, ita, jpn, lat, pol, por, rus, spa, tgl +format wav +channel 1 +sampling rate 16000 +bit depth 16 +duration 4 days 13:17:22.582937499 +files 2016 +repository `data-public `__ +published 2023-12-20 by audeering-unittest +============= ====================== + + +Description +^^^^^^^^^^^ + +The goal of this corpus is to provide data for music/speech discrimination, speech/nonspeech detection, and voice activity detection. The corpus is divided into music, speech, and noise portions. In total there are approximately 109 hours of audio. Reference: https://arxiv.org/abs/1510.08484 + +Example +^^^^^^^ + +:file:`noise/free-sound/noise-free-sound-0324.wav` + +.. image:: ../musan.png + +.. raw:: html + +

+ +Tables +^^^^^^ + +.. csv-table:: + :header: ID,Type,Columns + :widths: 20, 10, 70 + + "files", "filewise", "duration" + "music", "filewise", "genre, vocals, artist, composer" + "music.fma", "filewise", "genre, vocals, artist, composer" + "music.fma-western-art", "filewise", "genre, vocals, artist, composer" + "music.hd-classical", "filewise", "genre, vocals, artist, composer" + "music.jamendo", "filewise", "genre, vocals, artist, composer" + "music.rfm", "filewise", "genre, vocals, artist, composer" + "noise", "filewise", "background_noise" + "noise.free-sound", "filewise", "background_noise" + "noise.sound-bible", "filewise", "background_noise" + "speech", "filewise", "gender, language" + "speech.librivox", "filewise", "gender, language" + "speech.us-gov", "filewise", "gender, language" + + +Schemes +^^^^^^^ + +.. csv-table:: + :header: ID,Dtype,Labels + + "artist", "str", "" + "background_noise", "bool", "" + "composer", "str", "" + "duration", "time", "" + "gender", "str", "female, male" + "genre", "str", "" + "language", "str", "ara, dan, deu, eng, fra, heb, hun, [...], lat, nld, pol, por, rus, spa, tgl, zho" + "vocals", "bool", "" diff --git a/_sources/datasets/vadtoolkit.rst.txt b/_sources/datasets/vadtoolkit.rst.txt new file mode 100644 index 0000000..332e3eb --- /dev/null +++ b/_sources/datasets/vadtoolkit.rst.txt @@ -0,0 +1,58 @@ +.. _vadtoolkit: + +vadtoolkit +---------- + +Created by Kim Jaeseok + + +============= ====================== +version `1.1.0 `__ +license `GPLv3 `__ +source https://github.com/jtkim-kaist/VAD +usage commercial +languages kor +format wav +channel 1 +sampling rate 16000 +bit depth 32, 16 +duration 0 days 02:00:09.703062500 +files 4 +repository `data-public `__ +published 2024-01-02 by audeering +============= ====================== + + +Description +^^^^^^^^^^^ + +VAD Toolkit: A Database for Voice Activity Detection At each environment, conversational speech by two Korean male speakers was recorded. The ground truth labels are manually annotated. Because the recording was carried out in the real world, unexpected noises are included to the dataset such as the crying of baby, the chirping of insects, mouse click sound, and etc.. + +Example +^^^^^^^ + +:file:`park.wav` + +.. image:: ../vadtoolkit.png + +.. raw:: html + +

+ +Tables +^^^^^^ + +.. csv-table:: + :header: ID,Type,Columns + :widths: 20, 10, 70 + + "segments", "segmented", "noise" + + +Schemes +^^^^^^^ + +.. csv-table:: + :header: ID,Dtype,Labels,Mappings + + "noise", "int", "0, 1, 2, 3", "✓" diff --git a/_static/pygments.css b/_static/pygments.css index 7a18115..8054382 100644 --- a/_static/pygments.css +++ b/_static/pygments.css @@ -17,6 +17,7 @@ span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: .highlight .cs { color: #60a0b0; background-color: #fff0f0 } /* Comment.Special */ .highlight .gd { color: #A00000 } /* Generic.Deleted */ .highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ .highlight .gr { color: #FF0000 } /* Generic.Error */ .highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ .highlight .gi { color: #00A000 } /* Generic.Inserted */ diff --git a/changelog.html b/changelog.html index c5ae0a7..fcf51fa 100644 --- a/changelog.html +++ b/changelog.html @@ -63,7 +63,7 @@
- v1.0.1 + v5c9d40c
@@ -176,7 +176,7 @@

Version 1.0.0 (2023-03-20)Sphinx on 2023/03/20 using the audEERING theme + Built with Sphinx on 2024/01/03 using the audEERING theme

diff --git a/contributing.html b/contributing.html index 7bd64d9..a02f849 100644 --- a/contributing.html +++ b/contributing.html @@ -31,7 +31,7 @@ - + @@ -64,7 +64,7 @@
- v1.0.1 + v5c9d40c
@@ -212,7 +212,7 @@

Creating a New Release - + @@ -224,7 +224,7 @@

Creating a New ReleaseSphinx on 2023/03/20 using the audEERING theme + Built with Sphinx on 2024/01/03 using the audEERING theme

diff --git a/datasets.html b/datasets.html index bef5cc5..c571a68 100644 --- a/datasets.html +++ b/datasets.html @@ -30,7 +30,7 @@ - + @@ -64,7 +64,7 @@
- v1.0.1 + v5c9d40c
@@ -91,7 +91,13 @@

Overview

@@ -137,7 +143,7 @@

Datasets

-

Datasets available with audb as of Mar 20, 2023. +

Datasets available with audb as of Jan 03, 2024. For each dataset, the latest version is shown.

@@ -156,12 +162,48 @@ - + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + + + + + +

emodb

air

The Aachen Impulse Response (AIR) database is a set of impulse responses that were measured in a wide variety of rooms. The initial aim of the AIR …

MIT

1.4.2

azimuth, distance, mode, reverberation-time, room

cough-speech-sneeze

Cough-speech-sneeze: a data set of human sounds This dataset was collected by Dr. Shahin Amiriparian. It contains samples of human speech, coughing…

CC-BY-4.0

2.0.1

category

crema-d

CREMA-D: Crowd-sourced Emotional Mutimodal Actors Dataset CREMA-D is a data set of 7,442 original clips from 91 actors. These clips were from 48 m…

Open Data Commons Open Database License (ODbL) v1.0

1.2.0

emotion: [anger, disgust, fear, happiness, neutral, no_agreement, sadness], speaker: [age, sex, race, ethnicity], corrupted, emotion.agreement, emotion.intensity, emotion.level, sentence, votes

emodb

Berlin Database of Emotional Speech. A German database of emotional utterances spoken by actors recorded as a part of the DFG funded research proje…

CC0-1.0

1.3.0

1.4.1

emotion: [anger, boredom, disgust, fear, happiness, sadness, neutral], speaker: [age, gender, language], age, confidence, gender, language, transcription

micirp

The Microphone Impulse Response Project (MicIRP) contains impulse response data for vintage microphones. The impulse response files were created us…

CC-BY-SA-4.0

1.0.0

manufacturer

musan

The goal of this corpus is to provide data for music/speech discrimination, speech/nonspeech detection, and voice activity detection. The corpus is…

CC-BY-4.0

1.0.0

artist, background_noise, composer, gender, genre, language, vocals

vadtoolkit

VAD Toolkit: A Database for Voice Activity Detection At each environment, conversational speech by two Korean male speakers was recorded. The groun…

GPLv3

1.1.0

noise

@@ -176,7 +218,7 @@ diff --git a/datasets/air.html b/datasets/air.html new file mode 100644 index 0000000..b858528 --- /dev/null +++ b/datasets/air.html @@ -0,0 +1,361 @@ + + + + + + + + + + + air — datasets + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + +
+ +
+ +
+ +
+
+
+
+ +
+

air

+

Created by Marco Jeub, Magnus Schäfer, Hauke Krüger, Christoph Matthias Nelke, Christophe Beaugeant, Peter Vary

+ ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

version

1.4.2

license

MIT

source

https://www.iks.rwth-aachen.de/en/research/tools-downloads/databases/aachen-impulse-response-database/

usage

commercial

languages

format

wav

channel

2

sampling rate

48000

bit depth

16

duration

0 days 00:04:43.719958333

files

107

repository

data-public

published

2023-12-21 by audeering-unittest

+
+

Description

+

The Aachen Impulse Response (AIR) database is a set of impulse responses that were measured in a wide variety of rooms. The initial aim of the AIR database was to allow for realistic studies of signal processing algorithms in reverberant environments with a special focus on hearing aids applications. The first version was published in 2009 and offers binaural room impulse responses (BRIR) measured with a dummy head in different locations with different acoustical properties, such as reverberation time and room volume. Besides the evaluation of dereverberation algorithms and perceptual investigations of reverberant speech, this part of the database allows for the investigation of head shadowing influence since all recordings where made with and without the dummy head. In a first update, the database was extended to BRIRs with various azimuth angles between head and desired source. This further allows to investigate (binaural) direction-of-arrival (DOA) algorithms as well as the influence of signal processing algorithms on the binaural cues. Since dereverberation can also be applied to telephone speech, the latest extension includes (dual-channel) impulse responses between the artificial mouth of a dummy head and a mock-up phone. The measurements were carried out in compliance with the ITU standards for both the hand-held and the hands-free position. Additional microphone configurations were added in the latest extension. For the third big extension, the IKS has carried out measurements of binaural room impulse responses in the Aula Carolina Aachen. The former church with a ground area of 570m² and a high ceiling shows very strong reverberation effects. The database will successively be extended to further application scenarios.

+
+
+

Example

+

data/air_binaural_stairway_1_1_0.wav

+../_images/air.png +

+
+

Tables

+ +++++ + + + + + + + + + + + + + + + + + + + + +

ID

Type

Columns

brir

filewise

room, azimuth

phone

filewise

room, mode

rir

filewise

room, distance, reverberation-time

+
+
+

Schemes

+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ID

Dtype

Labels

Mappings

azimuth

float

distance

float

mode

str

hand-held, hands-free

reverberation-time

float

room

str

aula_carolina, bathroom, booth, corridor, kitchen, lecture, meeting, office, stairway

floor cover, furniture, room height, room length, room width, wall surface

+
+
+ + +
+ +
+ +
+
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/datasets/cough-speech-sneeze.html b/datasets/cough-speech-sneeze.html new file mode 100644 index 0000000..d091b25 --- /dev/null +++ b/datasets/cough-speech-sneeze.html @@ -0,0 +1,334 @@ + + + + + + + + + + + cough-speech-sneeze — datasets + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + +
+ +
+ +
+ +
+
+
+
+ +
+

cough-speech-sneeze

+

Created by S Amiriparian, S Pugachevskiy, N Cummins, D Hantke, J Pohjalainen, G Keren, Schuller, BW

+ ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

version

2.0.1

license

CC-BY-4.0

source

Dataset based on the publication of Shahin Amiriparian: “Amiriparian, S., Pugachevskiy, S., Cummins, N., Hantke, S., Pohjalainen, J., Keren, G., Schuller, B., 2017. CAST a database: Rapid targeted large-scale big data acquisition via small-world modelling of social media platforms, in: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, pp. 340–345. https://doi.org/10.1109/ACII.2017.8273622

usage

commercial

languages

format

wav

channel

1

sampling rate

16000, 44100

bit depth

16

duration

0 days 03:02:29.436148526

files

4310

repository

data-public

published

2024-01-02 by audeering

+
+

Description

+

Cough-speech-sneeze: a data set of human sounds This dataset was collected by Dr. Shahin Amiriparian. It contains samples of human speech, coughing, and sneezing collected from YouTube, as well as silence clips. The original publication of this (possibly then extended) dataset is the following: Amiriparian, S., Pugachevskiy, S., Cummins, N., Hantke, S., Pohjalainen, J., Keren, G., Schuller, B., 2017. CAST a database: Rapid targeted large-scale big data acquisition via small-world modelling of social media platforms, in: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, pp. 340–345. https://doi.org/10.1109/ACII.2017.8273622

+
+
+

Example

+

coughing/6hw6_4eb_hq_18.41-19.81.wav

+../_images/cough-speech-sneeze.png +

+
+

Tables

+ +++++ + + + + + + + + + + + + +

ID

Type

Columns

files

filewise

category, duration

+
+
+

Schemes

+ +++++ + + + + + + + + + + + + + + + + +

ID

Dtype

Labels

category

str

coughing, silence, sneezing, speech

duration

time

+
+
+ + +
+ +
+ +
+
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/datasets/crema-d.html b/datasets/crema-d.html new file mode 100644 index 0000000..ed8aa3d --- /dev/null +++ b/datasets/crema-d.html @@ -0,0 +1,512 @@ + + + + + + + + + + + crema-d — datasets + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + +
+ +
+ +
+ +
+
+
+
+ +
+

crema-d

+

Created by Houwei Cao, David G. Cooper, Michael K. Keutmann, Ruben C. Gur, Ani Nenkova, Ragini Verma, Samantha L Moore, Adam Savitt

+ ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

version

1.2.0

license

Open Data Commons Open Database License (ODbL) v1.0

source

https://github.com/CheyneyComputerScience/CREMA-D

usage

commercial

languages

English

format

wav

channel

1

sampling rate

16000

bit depth

16

duration

0 days 05:15:21.404187500

files

7441

repository

data-public

published

2024-01-02 by audeering

+
+

Description

+

CREMA-D: Crowd-sourced Emotional Mutimodal Actors Dataset CREMA-D is a data set of 7,442 original clips from 91 actors. These clips were from 48 male and 43 female actors between the ages of 20 and 74 coming from a variety of races and ethnicities (African America, Asian, Caucasian, Hispanic, and Unspecified). When using the database commercially, the database must be referenced together with its license.

+
+
+

Example

+

1001/1001_TAI_HAP_XX.wav

+../_images/crema-d.png +

+
+

Tables

+ +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ID

Type

Columns

emotion.categories.desired.dev

filewise

emotion, emotion.intensity

emotion.categories.desired.test

filewise

emotion, emotion.intensity

emotion.categories.desired.train

filewise

emotion, emotion.intensity

emotion.categories.dev

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level

emotion.categories.dev.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.dev.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.face.dev

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level

emotion.categories.face.dev.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.face.dev.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.face.test

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level

emotion.categories.face.test.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.face.test.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.face.train

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level

emotion.categories.face.train.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.face.train.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.multimodal.dev

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level

emotion.categories.multimodal.dev.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.multimodal.dev.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.multimodal.test

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level

emotion.categories.multimodal.test.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.multimodal.test.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.multimodal.train

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level

emotion.categories.multimodal.train.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.multimodal.train.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.test

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level

emotion.categories.test.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.test.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

emotion.categories.train

filewise

emotion.0, emotion.0.level, emotion.1, emotion.1.level, emotion.2, emotion.2.level, emotion.3, emotion.3.level, emotion.4, emotion.4.level

emotion.categories.train.gold_standard

filewise

emotion, emotion.level, emotion.agreement

emotion.categories.train.votes

filewise

anger, disgust, fear, happiness, neutral, sadness

files

filewise

speaker, corrupted

sentence

filewise

sentence

+
+
+

Schemes

+ ++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ID

Dtype

Min

Max

Labels

Mappings

corrupted

bool

emotion

str

anger, disgust, fear, happiness, neutral, no_agreement, sadness

emotion.agreement

float

1

emotion.intensity

str

high, low, mid, unspecified

emotion.level

float

100

sentence

str

DFA, IEO, IOM, ITH, ITS, IWL, IWW, MTI, TAI, TIE, TSI, WSI

speaker

int

1001, 1002, 1003, 1004, 1005, 1006, 1007, […], 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091

age, ethnicity, race, sex

votes

int

+
+
+ + +
+ +
+ +
+
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/datasets/emodb.html b/datasets/emodb.html index 5fb1d52..85138f8 100644 --- a/datasets/emodb.html +++ b/datasets/emodb.html @@ -30,8 +30,8 @@ - - + + @@ -64,7 +64,7 @@
- v1.0.1 + v5c9d40c
@@ -91,6 +91,9 @@

Overview

@@ -152,7 +158,7 @@

version

-

1.3.0

+

1.4.1

license

CC0-1.0

@@ -188,7 +194,7 @@

data-public

published

-

2022-08-05 by audeering-unittest

+

2023-04-05 by audeering-unittest

@@ -199,6 +205,7 @@

Description

Example

wav/13b09La.wav

+../_images/emodb.png

Tables

@@ -328,10 +335,10 @@

Schemes - + - +

@@ -343,7 +350,7 @@

SchemesSphinx on 2023/03/20 using the audEERING theme + Built with Sphinx on 2024/01/03 using the audEERING theme

diff --git a/datasets/micirp.html b/datasets/micirp.html new file mode 100644 index 0000000..0993ff6 --- /dev/null +++ b/datasets/micirp.html @@ -0,0 +1,330 @@ + + + + + + + + + + + micirp — datasets + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + +
+ +
+ +
+ +
+
+
+
+ +
+

micirp

+

Created by Stewart Tavener (Xaudia.com)

+ ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

version

1.0.0

license

CC-BY-SA-4.0

source

http://micirp.blogspot.com/

usage

commercial

languages

format

wav

channel

1

sampling rate

44100, 48000

bit depth

24

duration

0 days 00:00:27.341591837

files

66

repository

data-public

published

2023-12-21 by audeering

+
+

Description

+

The Microphone Impulse Response Project (MicIRP) contains impulse response data for vintage microphones. The impulse response files were created using the analysis software Fuzzmeasure. The microphones were tested using a swept-sine method in a small booth, treated with much acoustic foam, placed about 20 to 30 cm from the source. Although the recording system and booth are calibrated regularly with a Beyerdynamic measurement microphone, there are problems comparing, for example, a figure-8 ribbon with an omnidirectional standard, as they will see different amounts of reflections from the side. So, it should be noted that the impulse response files describe the microphones measured in the booth, rather than in free space.

+
+
+

Example

+

dirs/IR_AKGD12.wav

+../_images/micirp.png +

+
+

Tables

+ +++++ + + + + + + + + + + + + +

ID

Type

Columns

files

filewise

manufacturer

+
+
+

Schemes

+ +++++ + + + + + + + + + + + + +

ID

Dtype

Labels

manufacturer

str

AKG, Altec, American, Amperite, Astatic, B&O, BBC, […], Oktava, RCA, Reslo, STC, Shure, Sony, Telefunken, Toshiba

+
+
+ + +
+ +
+ +
+
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/datasets/musan.html b/datasets/musan.html new file mode 100644 index 0000000..6fd332c --- /dev/null +++ b/datasets/musan.html @@ -0,0 +1,406 @@ + + + + + + + + + + + musan — datasets + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + +
+ +
+ +
+ +
+
+
+
+ +
+

musan

+

Created by David Snyder, Guoguo Chen, Daniel Povey

+ ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

version

1.0.0

license

CC-BY-4.0

source

http://www.openslr.org/17/

usage

commercial

languages

ara, zho, dan, nld, eng, fra, deu, heb, hun, ita, jpn, lat, pol, por, rus, spa, tgl

format

wav

channel

1

sampling rate

16000

bit depth

16

duration

4 days 13:17:22.582937499

files

2016

repository

data-public

published

2023-12-20 by audeering-unittest

+
+

Description

+

The goal of this corpus is to provide data for music/speech discrimination, speech/nonspeech detection, and voice activity detection. The corpus is divided into music, speech, and noise portions. In total there are approximately 109 hours of audio. Reference: https://arxiv.org/abs/1510.08484

+
+
+

Example

+

noise/free-sound/noise-free-sound-0324.wav

+../_images/musan.png +

+
+

Tables

+ +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ID

Type

Columns

files

filewise

duration

music

filewise

genre, vocals, artist, composer

music.fma

filewise

genre, vocals, artist, composer

music.fma-western-art

filewise

genre, vocals, artist, composer

music.hd-classical

filewise

genre, vocals, artist, composer

music.jamendo

filewise

genre, vocals, artist, composer

music.rfm

filewise

genre, vocals, artist, composer

noise

filewise

background_noise

noise.free-sound

filewise

background_noise

noise.sound-bible

filewise

background_noise

speech

filewise

gender, language

speech.librivox

filewise

gender, language

speech.us-gov

filewise

gender, language

+
+
+

Schemes

+ +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

ID

Dtype

Labels

artist

str

background_noise

bool

composer

str

duration

time

gender

str

female, male

genre

str

language

str

ara, dan, deu, eng, fra, heb, hun, […], lat, nld, pol, por, rus, spa, tgl, zho

vocals

bool

+
+
+ + +
+ +
+ +
+
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/datasets/vadtoolkit.html b/datasets/vadtoolkit.html new file mode 100644 index 0000000..43c6313 --- /dev/null +++ b/datasets/vadtoolkit.html @@ -0,0 +1,333 @@ + + + + + + + + + + + vadtoolkit — datasets + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + +
+ +
+ +
+ +
+
+
+
+ +
+

vadtoolkit

+

Created by Kim Jaeseok

+ ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

version

1.1.0

license

GPLv3

source

https://github.com/jtkim-kaist/VAD

usage

commercial

languages

kor

format

wav

channel

1

sampling rate

16000

bit depth

32, 16

duration

0 days 02:00:09.703062500

files

4

repository

data-public

published

2024-01-02 by audeering

+
+

Description

+

VAD Toolkit: A Database for Voice Activity Detection At each environment, conversational speech by two Korean male speakers was recorded. The ground truth labels are manually annotated. Because the recording was carried out in the real world, unexpected noises are included to the dataset such as the crying of baby, the chirping of insects, mouse click sound, and etc..

+
+
+

Example

+

park.wav

+../_images/vadtoolkit.png +

+
+

Tables

+ +++++ + + + + + + + + + + + + +

ID

Type

Columns

segments

segmented

noise

+
+
+

Schemes

+ ++++++ + + + + + + + + + + + + + + +

ID

Dtype

Labels

Mappings

noise

int

0, 1, 2, 3

+
+
+ + +
+ +
+ +
+
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/genindex.html b/genindex.html index 00ff48a..665cd29 100644 --- a/genindex.html +++ b/genindex.html @@ -62,7 +62,7 @@
- v1.0.1 + v5c9d40c
@@ -151,7 +151,7 @@

Index

- Built with Sphinx on 2023/03/20 using the audEERING theme + Built with Sphinx on 2024/01/03 using the audEERING theme

diff --git a/index.html b/index.html index d29bce9..972e36d 100644 --- a/index.html +++ b/index.html @@ -63,7 +63,7 @@
- v1.0.1 + v5c9d40c
@@ -173,7 +173,7 @@

datasetsSphinx on 2023/03/20 using the audEERING theme + Built with Sphinx on 2024/01/03 using the audEERING theme

diff --git a/objects.inv b/objects.inv index 4ebe762..eee73d2 100644 --- a/objects.inv +++ b/objects.inv @@ -1,7 +1,6 @@ # Sphinx inventory version 2 # Project: datasets -# Version: v1.0.1 +# Version: v5c9d40c # The remainder of this file is compressed using zlib. -xڅ -0DVU/_&KRH1[ouЂݙ73Jo#"J4'x48q/w#z -hI2"25ƯQ';t+x_G /y5U.}OX_d{УT\bD6:Qq~+   \ No newline at end of file +xڅn <I{M{m/=4٤O0QRt *'gdREm^`9IA=<҆XHdt$hoe;y@L7~dqb5S4pȷxJ _VYs_WLu*}Z)nh - v1.0.1 + v5c9d40c @@ -157,7 +157,7 @@ - Built with Sphinx on 2023/03/20 using the audEERING theme + Built with Sphinx on 2024/01/03 using the audEERING theme

diff --git a/searchindex.js b/searchindex.js index edb45f8..2809260 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["changelog", "contributing", "datasets", "datasets/emodb", "index"], "filenames": ["changelog.rst", "contributing.rst", "datasets.rst", "datasets/emodb.rst", "index.rst"], "titles": ["Changelog", "Contributing", "Datasets", "emodb", "datasets"], "terms": {"all": [0, 1], "notabl": 0, "chang": [0, 1], "thi": [0, 1], "project": [0, 1, 3], "document": 0, "file": [0, 1, 3, 4], "The": [0, 1, 4], "format": [0, 3], "i": [0, 1, 2, 4], "base": 0, "keep": 0, "adher": 0, "semant": 0, "fix": 0, "link": [0, 1], "github": [0, 1], "page": 0, "readm": 0, "ad": 0, "list": 0, "avail": [0, 1, 2, 4], "dataset": 0, "data": [0, 3, 4], "card": [0, 4], "emodb": [0, 2, 4], "everyon": 1, "invit": 1, "feel": 1, "free": 1, "pull": 1, "request": 1, "If": 1, "you": 1, "find": 1, "error": 1, "omiss": 1, "inconsist": 1, "other": 1, "thing": 1, "need": 1, "improv": 1, "pleas": 1, "an": 1, "issu": 1, "we": 1, "follow": [1, 4], "pep8": 1, "python": 1, "check": 1, "correct": 1, "syntax": 1, "flake8": 1, "except": 1, "ar": 1, "defin": 1, "under": 1, "section": 1, "setup": 1, "cfg": 1, "execut": 1, "ci": 1, "us": [1, 4], "pre": 1, "commit": 1, "can": 1, "enabl": 1, "those": 1, "local": 1, "pip": 1, "instal": 1, "consid": 1, "system": 1, "wide": 1, "run": 1, "afterward": 1, "everi": 1, "time": [1, 3], "also": [1, 4], "call": 1, "directli": 1, "It": [1, 3], "restrict": 1, "specif": 1, "folder": 1, "doc": 1, "result": 1, "gener": 1, "sphinx": 1, "few": 1, "necessari": 1, "packag": 1, "r": 1, "requir": 1, "txt": 1, "To": 1, "m": 1, "b": 1, "directori": 1, "possibl": 1, "automat": 1, "still": 1, "valid": 1, "linkcheck": 1, "made": 1, "step": 1, "updat": 1, "changelog": 1, "rst": 1, "x": 1, "y": 1, "z": 1, "branch": 1, "onc": 1, "merg": 1, "annot": [1, 4], "tag": 1, "git": 1, "push": 1, "audb": [2, 4], "mar": 2, "20": 2, "2023": 2, "For": 2, "each": [2, 4], "latest": 2, "version": [2, 3, 4], "shown": 2, "name": 2, "descript": 2, "licens": [2, 3], "scheme": 2, "berlin": [2, 3], "databas": [2, 3], "emot": [2, 3], "speech": [2, 3], "A": [2, 3], "german": [2, 3], "utter": [2, 3], "spoken": [2, 3], "actor": [2, 3], "record": [2, 3], "part": [2, 3], "dfg": [2, 3], "fund": [2, 3], "research": [2, 3], "proje": 2, "cc0": [2, 3], "1": [2, 3, 4], "0": [2, 3, 4], "3": [2, 3, 4], "anger": [2, 3], "boredom": [2, 3], "disgust": [2, 3], "fear": [2, 3], "happi": [2, 3], "sad": [2, 3], "neutral": [2, 3], "speaker": [2, 3], "ag": [2, 3], "gender": [2, 3], "languag": [2, 3], "confid": [2, 3], "transcript": [2, 3], "creat": 3, "felix": 3, "burkhardt": 3, "astrid": 3, "paeschk": 3, "miriam": 3, "rolf": 3, "walter": 3, "sendlmeier": 3, "benjamin": 3, "weiss": 3, "sourc": 3, "http": 3, "bilderbar": 3, "info": 3, "download": 3, "zip": 3, "usag": 3, "unrestrict": 3, "deu": 3, "wav": 3, "channel": 3, "sampl": 3, "rate": 3, "16000": 3, "bit": 3, "depth": 3, "16": 3, "durat": 3, "dai": 3, "00": 3, "24": 3, "47": 3, "092187500": 3, "535": 3, "repositori": 3, "public": [3, 4], "publish": 3, "2022": 3, "08": 3, "05": 3, "audeer": 3, "unittest": 3, "se462": 3, "1997": 3, "1999": 3, "took": 3, "place": 3, "anecho": 3, "chamber": 3, "technic": 3, "univers": 3, "depart": 3, "acoust": 3, "contain": 3, "about": 3, "500": 3, "from": 3, "ten": 3, "differ": 3, "express": 3, "basic": 3, "six": 3, "13b09la": 3, "id": 3, "type": 3, "column": 3, "filewis": 3, "categori": 3, "test": 3, "gold_standard": 3, "train": 3, "misc": 3, "dtype": 3, "min": 3, "max": 3, "label": 3, "map": 3, "int": 3, "float": 3, "str": 3, "femal": 3, "male": 3, "8": 3, "9": 3, "10": 3, "11": 3, "12": 3, "13": 3, "14": 3, "15": 3, "a01": 3, "a02": 3, "a04": 3, "a05": 3, "a07": 3, "b01": 3, "b02": 3, "b03": 3, "b09": 3, "b10": 3, "overview": 4, "summar": 4, "load": 4, "command": 4, "audio": 4, "exampl": 4, "db": 4, "see": 4, "quickstart": 4, "guid": 4}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"changelog": 0, "version": 0, "1": 0, "0": 0, "2023": 0, "03": 0, "20": 0, "contribut": 1, "code": 1, "convent": 1, "build": 1, "html": 1, "page": 1, "creat": 1, "new": 1, "releas": 1, "dataset": [2, 4], "emodb": 3, "descript": 3, "exampl": 3, "tabl": 3, "scheme": 3}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"Changelog": [[0, "changelog"]], "Version 1.0.1 (2023-03-20)": [[0, "version-1-0-1-2023-03-20"]], "Version 1.0.0 (2023-03-20)": [[0, "version-1-0-0-2023-03-20"]], "Contributing": [[1, "contributing"]], "Coding Convention": [[1, "coding-convention"]], "Building the HTML pages": [[1, "building-the-html-pages"]], "Creating a New Release": [[1, "creating-a-new-release"]], "Datasets": [[2, "datasets"]], "emodb": [[3, "emodb"]], "Description": [[3, "description"]], "Example": [[3, "example"]], "Tables": [[3, "tables"]], "Schemes": [[3, "schemes"]], "datasets": [[4, "datasets"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["changelog", "contributing", "datasets", "datasets/air", "datasets/cough-speech-sneeze", "datasets/crema-d", "datasets/emodb", "datasets/micirp", "datasets/musan", "datasets/vadtoolkit", "index"], "filenames": ["changelog.rst", "contributing.rst", "datasets.rst", "datasets/air.rst", "datasets/cough-speech-sneeze.rst", "datasets/crema-d.rst", "datasets/emodb.rst", "datasets/micirp.rst", "datasets/musan.rst", "datasets/vadtoolkit.rst", "index.rst"], "titles": ["Changelog", "Contributing", "Datasets", "air", "cough-speech-sneeze", "crema-d", "emodb", "micirp", "musan", "vadtoolkit", "datasets"], "terms": {"all": [0, 1, 3], "notabl": 0, "chang": [0, 1], "thi": [0, 1, 2, 3, 4, 8], "project": [0, 1, 2, 6, 7], "document": 0, "file": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "The": [0, 1, 2, 3, 4, 7, 8, 9, 10], "format": [0, 3, 4, 5, 6, 7, 8, 9], "i": [0, 1, 2, 3, 4, 5, 8, 10], "base": [0, 4], "keep": 0, "adher": 0, "semant": 0, "fix": 0, "link": [0, 1], "github": [0, 1, 5, 9], "page": 0, "readm": 0, "ad": [0, 3], "list": 0, "avail": [0, 1, 2, 10], "dataset": [0, 4, 5, 9], "data": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10], "card": [0, 10], "emodb": [0, 2, 10], "everyon": 1, "invit": 1, "feel": 1, "free": [1, 3, 7, 8], "pull": 1, "request": 1, "If": 1, "you": 1, "find": 1, "error": 1, "omiss": 1, "inconsist": 1, "other": 1, "thing": 1, "need": 1, "improv": 1, "pleas": 1, "an": [1, 7], "issu": 1, "we": 1, "follow": [1, 4, 10], "pep8": 1, "python": 1, "check": 1, "correct": 1, "syntax": 1, "flake8": 1, "except": 1, "ar": [1, 7, 8, 9], "defin": 1, "under": 1, "section": 1, "setup": 1, "cfg": 1, "execut": 1, "ci": 1, "us": [1, 5, 7, 10], "pre": 1, "commit": 1, "can": [1, 3], "enabl": 1, "those": 1, "local": 1, "pip": 1, "instal": 1, "consid": 1, "system": [1, 7], "wide": [1, 2, 3], "run": 1, "afterward": 1, "everi": 1, "time": [1, 2, 3, 4, 6, 8], "also": [1, 3, 10], "call": 1, "directli": 1, "It": [1, 2, 4, 6], "restrict": 1, "specif": 1, "folder": 1, "doc": 1, "result": 1, "gener": 1, "sphinx": 1, "few": 1, "necessari": 1, "packag": 1, "r": 1, "requir": 1, "txt": 1, "To": 1, "m": [1, 2], "b": [1, 4, 7], "directori": 1, "possibl": 1, "automat": 1, "still": 1, "valid": 1, "linkcheck": 1, "made": [1, 3], "step": 1, "updat": [1, 3], "changelog": 1, "rst": 1, "x": 1, "y": 1, "z": 1, "branch": 1, "onc": 1, "merg": 1, "annot": [1, 9, 10], "tag": 1, "git": 1, "push": 1, "audb": [2, 10], "jan": 2, "03": [2, 4], "2024": [2, 4, 5, 9], "For": [2, 3], "each": [2, 9, 10], "latest": [2, 3], "version": [2, 3, 4, 5, 6, 7, 8, 9, 10], "shown": 2, "name": 2, "descript": 2, "licens": [2, 3, 4, 5, 6, 7, 8, 9], "scheme": 2, "air": 2, "aachen": [2, 3], "impuls": [2, 3, 7], "respons": [2, 3, 7], "databas": [2, 3, 4, 5, 6, 9], "set": [2, 3, 4, 5], "were": [2, 3, 5, 7], "measur": [2, 3, 7], "varieti": [2, 3, 5], "room": [2, 3], "initi": [2, 3], "aim": [2, 3], "mit": [2, 3], "1": [2, 3, 4, 5, 6, 7, 8, 9, 10], "4": [2, 3, 4, 5, 6, 7, 8, 9], "2": [2, 3, 4, 5, 9], "azimuth": [2, 3], "distanc": [2, 3], "mode": [2, 3], "reverber": [2, 3], "cough": 2, "speech": [2, 3, 6, 8, 9], "sneez": 2, "human": [2, 4], "sound": [2, 4, 8, 9], "wa": [2, 3, 4, 9], "collect": [2, 4], "dr": [2, 4], "shahin": [2, 4], "amiriparian": [2, 4], "contain": [2, 4, 6, 7], "sampl": [2, 3, 4, 5, 6, 7, 8, 9], "cc": [2, 4, 7, 8], "BY": [2, 4, 7, 8], "0": [2, 3, 4, 5, 6, 7, 8, 9, 10], "categori": [2, 4, 5, 6], "crema": 2, "d": [2, 4], "crowd": [2, 5], "sourc": [2, 3, 4, 5, 6, 7, 8, 9], "emot": [2, 5, 6], "mutimod": [2, 5], "actor": [2, 5, 6], "7": [2, 5], "442": [2, 5], "origin": [2, 4, 5], "clip": [2, 4, 5], "from": [2, 4, 5, 6, 7], "91": [2, 5], "These": [2, 5], "48": [2, 5], "open": [2, 5], "common": [2, 5], "odbl": [2, 5], "v1": [2, 5], "anger": [2, 5, 6], "disgust": [2, 5, 6], "fear": [2, 5, 6], "happi": [2, 5, 6], "neutral": [2, 5, 6], "no_agr": [2, 5], "sad": [2, 5, 6], "speaker": [2, 5, 6, 9], "ag": [2, 5, 6], "sex": [2, 5], "race": [2, 5], "ethnic": [2, 5], "corrupt": [2, 5], "agreement": [2, 5], "intens": [2, 5], "level": [2, 5], "sentenc": [2, 5], "vote": [2, 5], "berlin": [2, 6], "A": [2, 6, 9], "german": [2, 6], "utter": [2, 6], "spoken": [2, 6], "record": [2, 3, 6, 7, 9], "part": [2, 3, 6], "dfg": [2, 6], "fund": [2, 6], "research": [2, 3, 6], "proje": 2, "cc0": [2, 6], "boredom": [2, 6], "gender": [2, 6, 8], "languag": [2, 3, 4, 5, 6, 7, 8, 9], "confid": [2, 6], "transcript": [2, 6], "micirp": 2, "microphon": [2, 3, 7], "vintag": [2, 7], "creat": [2, 3, 4, 5, 6, 7, 8, 9], "u": [2, 8], "sa": [2, 7], "manufactur": [2, 7], "musan": 2, "goal": [2, 8], "corpu": [2, 8], "provid": [2, 8], "music": [2, 8], "discrimin": [2, 8], "nonspeech": [2, 8], "detect": [2, 8, 9], "voic": [2, 8, 9], "activ": [2, 8, 9], "artist": [2, 8], "background_nois": [2, 8], "compos": [2, 8], "genr": [2, 8], "vocal": [2, 8], "vadtoolkit": 2, "vad": [2, 9], "toolkit": [2, 9], "At": [2, 9], "environ": [2, 3, 9], "convers": [2, 9], "two": [2, 9], "korean": [2, 9], "male": [2, 5, 6, 8, 9], "groun": 2, "gplv3": [2, 9], "nois": [2, 8, 9], "marco": 3, "jeub": 3, "magnu": 3, "sch\u00e4fer": 3, "hauk": 3, "kr\u00fcger": 3, "christoph": 3, "matthia": 3, "nelk": 3, "beaugeant": 3, "peter": 3, "vari": 3, "http": [3, 4, 5, 6, 7, 8, 9], "www": [3, 8], "ik": 3, "rwth": 3, "de": 3, "en": 3, "tool": 3, "download": [3, 6], "usag": [3, 4, 5, 6, 7, 8, 9], "commerci": [3, 4, 5, 7, 8, 9], "wav": [3, 4, 5, 6, 7, 8, 9], "channel": [3, 4, 5, 6, 7, 8, 9], "rate": [3, 4, 5, 6, 7, 8, 9], "48000": [3, 7], "bit": [3, 4, 5, 6, 7, 8, 9], "depth": [3, 4, 5, 6, 7, 8, 9], "16": [3, 4, 5, 6, 8, 9], "durat": [3, 4, 5, 6, 7, 8, 9], "dai": [3, 4, 5, 6, 7, 8, 9], "00": [3, 6, 7, 9], "04": [3, 6], "43": [3, 5], "719958333": 3, "107": 3, "repositori": [3, 4, 5, 6, 7, 8, 9], "public": [3, 4, 5, 6, 7, 8, 9, 10], "publish": [3, 4, 5, 6, 7, 8, 9], "2023": [3, 6, 7, 8], "12": [3, 6, 7, 8], "21": [3, 5, 7], "audeer": [3, 4, 5, 6, 7, 8, 9], "unittest": [3, 6, 8], "allow": 3, "realist": 3, "studi": 3, "signal": 3, "process": 3, "algorithm": 3, "special": 3, "focu": 3, "hear": 3, "aid": 3, "applic": 3, "first": 3, "2009": 3, "offer": 3, "binaur": 3, "brir": 3, "dummi": 3, "head": 3, "differ": [3, 6, 7], "locat": 3, "acoust": [3, 6, 7], "properti": 3, "volum": 3, "besid": 3, "evalu": 3, "dereverber": 3, "perceptu": 3, "investig": 3, "shadow": 3, "influenc": 3, "sinc": 3, "where": 3, "without": 3, "In": [3, 8], "extend": [3, 4], "variou": 3, "angl": 3, "between": [3, 5], "desir": [3, 5], "further": 3, "direct": 3, "arriv": 3, "doa": 3, "well": [3, 4], "cue": 3, "appli": 3, "telephon": 3, "extens": 3, "includ": [3, 9], "dual": 3, "artifici": 3, "mouth": 3, "mock": 3, "up": 3, "phone": 3, "carri": [3, 9], "out": [3, 9], "complianc": 3, "itu": 3, "standard": [3, 7], "both": 3, "hand": 3, "held": 3, "posit": 3, "addit": 3, "configur": 3, "third": 3, "big": [3, 4], "ha": 3, "aula": 3, "carolina": 3, "former": 3, "church": 3, "ground": [3, 9], "area": 3, "570m\u00b2": 3, "high": [3, 5], "ceil": 3, "show": 3, "veri": 3, "strong": 3, "effect": 3, "success": 3, "scenario": 3, "air_binaural_stairway_1_1_0": 3, "id": [3, 4, 5, 6, 7, 8, 9], "type": [3, 4, 5, 6, 7, 8, 9], "column": [3, 4, 5, 6, 7, 8, 9], "filewis": [3, 4, 5, 6, 7, 8], "rir": 3, "dtype": [3, 4, 5, 6, 7, 8, 9], "label": [3, 4, 5, 6, 7, 8, 9], "map": [3, 5, 6, 9], "float": [3, 5, 6], "str": [3, 4, 5, 6, 7, 8], "aula_carolina": 3, "bathroom": 3, "booth": [3, 7], "corridor": 3, "kitchen": 3, "lectur": 3, "meet": 3, "offic": 3, "stairwai": 3, "floor": 3, "cover": 3, "furnitur": 3, "height": 3, "length": 3, "width": 3, "wall": 3, "surfac": 3, "": 4, "pugachevskii": 4, "n": 4, "cummin": 4, "hantk": 4, "j": 4, "pohjalainen": 4, "g": [4, 5], "keren": 4, "schuller": 4, "bw": 4, "2017": 4, "cast": 4, "rapid": 4, "target": 4, "larg": 4, "scale": 4, "acquisit": 4, "via": 4, "small": [4, 7], "world": [4, 9], "model": 4, "social": 4, "media": 4, "platform": 4, "seventh": 4, "intern": 4, "confer": 4, "affect": 4, "comput": 4, "intellig": 4, "interact": 4, "acii": 4, "ieee": 4, "pp": 4, "340": 4, "345": 4, "doi": 4, "org": [4, 8], "10": [4, 6], "1109": 4, "8273622": 4, "16000": [4, 5, 6, 8, 9], "44100": [4, 7], "02": [4, 5, 9], "29": 4, "436148526": 4, "4310": 4, "01": [4, 5, 9], "youtub": 4, "silenc": 4, "possibli": 4, "6hw6_4eb_hq_18": 4, "41": 4, "19": 4, "81": 4, "houwei": 5, "cao": 5, "david": [5, 8], "cooper": 5, "michael": 5, "k": 5, "keutmann": 5, "ruben": 5, "c": 5, "gur": 5, "ani": 5, "nenkova": 5, "ragini": 5, "verma": 5, "samantha": 5, "l": 5, "moor": 5, "adam": 5, "savitt": 5, "com": [5, 7, 9], "cheyneycomputersci": 5, "english": 5, "05": [5, 6], "15": [5, 6], "404187500": 5, "7441": 5, "femal": [5, 6, 8], "20": [5, 7, 8], "74": 5, "come": 5, "african": 5, "america": 5, "asian": 5, "caucasian": 5, "hispan": 5, "unspecifi": 5, "when": 5, "must": 5, "referenc": 5, "togeth": 5, "its": 5, "1001": 5, "1001_tai_hap_xx": 5, "dev": 5, "test": [5, 6, 7], "train": [5, 6], "3": [5, 6, 9, 10], "gold_standard": [5, 6], "face": 5, "multimod": 5, "min": [5, 6], "max": [5, 6], "bool": [5, 8], "low": 5, "mid": 5, "100": 5, "dfa": 5, "ieo": 5, "iom": 5, "ith": 5, "ITS": 5, "iwl": 5, "iww": 5, "mti": 5, "tai": 5, "tie": 5, "tsi": 5, "wsi": 5, "int": [5, 6, 9], "1002": 5, "1003": 5, "1004": 5, "1005": 5, "1006": 5, "1007": 5, "1084": 5, "1085": 5, "1086": 5, "1087": 5, "1088": 5, "1089": 5, "1090": 5, "1091": 5, "felix": 6, "burkhardt": 6, "astrid": 6, "paeschk": 6, "miriam": 6, "rolf": 6, "walter": 6, "sendlmeier": 6, "benjamin": 6, "weiss": 6, "bilderbar": 6, "info": 6, "zip": 6, "unrestrict": 6, "deu": [6, 8], "24": [6, 7], "47": 6, "092187500": 6, "535": 6, "se462": 6, "1997": 6, "1999": 6, "took": 6, "place": [6, 7], "anecho": 6, "chamber": 6, "technic": 6, "univers": 6, "depart": 6, "about": [6, 7], "500": 6, "ten": 6, "express": 6, "basic": 6, "six": 6, "13b09la": 6, "misc": 6, "8": [6, 7], "9": 6, "11": 6, "13": [6, 8], "14": 6, "a01": 6, "a02": 6, "a04": 6, "a05": 6, "a07": 6, "b01": 6, "b02": 6, "b03": 6, "b09": 6, "b10": 6, "stewart": 7, "taven": 7, "xaudia": 7, "blogspot": 7, "27": 7, "341591837": 7, "66": 7, "analysi": 7, "softwar": 7, "fuzzmeasur": 7, "swept": 7, "sine": 7, "method": 7, "treat": 7, "much": 7, "foam": 7, "30": 7, "cm": 7, "although": 7, "calibr": 7, "regularli": 7, "beyerdynam": 7, "problem": 7, "compar": 7, "figur": 7, "ribbon": 7, "omnidirect": 7, "thei": 7, "see": [7, 10], "amount": 7, "reflect": 7, "side": 7, "so": 7, "should": 7, "note": 7, "describ": 7, "rather": 7, "than": 7, "space": 7, "dir": 7, "ir_akgd12": 7, "akg": 7, "altec": 7, "american": 7, "amperit": 7, "astat": 7, "o": 7, "bbc": 7, "oktava": 7, "rca": 7, "reslo": 7, "stc": 7, "shure": 7, "soni": 7, "telefunken": 7, "toshiba": 7, "snyder": 8, "guoguo": 8, "chen": 8, "daniel": 8, "povei": 8, "openslr": 8, "17": 8, "ara": 8, "zho": 8, "dan": 8, "nld": 8, "eng": 8, "fra": 8, "heb": 8, "hun": 8, "ita": 8, "jpn": 8, "lat": 8, "pol": 8, "por": 8, "ru": 8, "spa": 8, "tgl": 8, "22": 8, "582937499": 8, "2016": 8, "divid": 8, "portion": 8, "total": 8, "approxim": 8, "109": 8, "hour": 8, "audio": [8, 10], "refer": 8, "arxiv": 8, "ab": 8, "1510": 8, "08484": 8, "0324": 8, "fma": 8, "western": 8, "art": 8, "hd": 8, "classic": 8, "jamendo": 8, "rfm": 8, "bibl": 8, "librivox": 8, "gov": 8, "kim": 9, "jaeseok": 9, "jtkim": 9, "kaist": 9, "kor": 9, "32": 9, "09": 9, "703062500": 9, "truth": 9, "manual": 9, "becaus": 9, "real": 9, "unexpect": 9, "cry": 9, "babi": 9, "chirp": 9, "insect": 9, "mous": 9, "click": 9, "etc": 9, "park": 9, "segment": 9, "overview": 10, "summar": 10, "load": 10, "command": 10, "exampl": 10, "db": 10, "quickstart": 10, "guid": 10}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"changelog": 0, "version": 0, "1": 0, "0": 0, "2023": 0, "03": 0, "20": 0, "contribut": 1, "code": 1, "convent": 1, "build": 1, "html": 1, "page": 1, "creat": 1, "new": 1, "releas": 1, "dataset": [2, 10], "air": 3, "descript": [3, 4, 5, 6, 7, 8, 9], "exampl": [3, 4, 5, 6, 7, 8, 9], "tabl": [3, 4, 5, 6, 7, 8, 9], "scheme": [3, 4, 5, 6, 7, 8, 9], "cough": 4, "speech": 4, "sneez": 4, "crema": 5, "d": 5, "emodb": 6, "micirp": 7, "musan": 8, "vadtoolkit": 9}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"Changelog": [[0, "changelog"]], "Version 1.0.1 (2023-03-20)": [[0, "version-1-0-1-2023-03-20"]], "Version 1.0.0 (2023-03-20)": [[0, "version-1-0-0-2023-03-20"]], "Contributing": [[1, "contributing"]], "Coding Convention": [[1, "coding-convention"]], "Building the HTML pages": [[1, "building-the-html-pages"]], "Creating a New Release": [[1, "creating-a-new-release"]], "Datasets": [[2, "datasets"]], "air": [[3, "air"]], "Description": [[3, "description"], [4, "description"], [5, "description"], [6, "description"], [7, "description"], [8, "description"], [9, "description"]], "Example": [[3, "example"], [4, "example"], [5, "example"], [6, "example"], [7, "example"], [8, "example"], [9, "example"]], "Tables": [[3, "tables"], [4, "tables"], [5, "tables"], [6, "tables"], [7, "tables"], [8, "tables"], [9, "tables"]], "Schemes": [[3, "schemes"], [4, "schemes"], [5, "schemes"], [6, "schemes"], [7, "schemes"], [8, "schemes"], [9, "schemes"]], "cough-speech-sneeze": [[4, "cough-speech-sneeze"]], "crema-d": [[5, "crema-d"]], "emodb": [[6, "emodb"]], "micirp": [[7, "micirp"]], "musan": [[8, "musan"]], "vadtoolkit": [[9, "vadtoolkit"]], "datasets": [[10, "datasets"]]}, "indexentries": {}}) \ No newline at end of file