forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modespnow.c
866 lines (766 loc) · 35 KB
/
modespnow.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2020 Nick Moore
* Copyright (c) 2018 shawwwn <[email protected]>
* Copyright (c) 2020-2021 Glenn Moloney @glenn20
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "esp_log.h"
#include "esp_now.h"
#include "esp_wifi.h"
#include "esp_wifi_types.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "py/obj.h"
#include "py/objstr.h"
#include "py/objarray.h"
#include "py/stream.h"
#include "py/binary.h"
#include "py/ringbuf.h"
#include "mpconfigport.h"
#if MICROPY_PY_ESPNOW
#include "mphalport.h"
#include "modnetwork.h"
#include "modespnow.h"
#ifndef MICROPY_PY_ESPNOW_RSSI
// Include code to track rssi of peers
#define MICROPY_PY_ESPNOW_RSSI 1
#endif
#ifndef MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS
// Include mod_peer(),get_peer(),peer_count()
#define MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS 1
#endif
// Relies on gcc Variadic Macros and Statement Expressions
#define NEW_TUPLE(...) \
({mp_obj_t _z[] = {__VA_ARGS__}; mp_obj_new_tuple(MP_ARRAY_SIZE(_z), _z); })
static const uint8_t ESPNOW_MAGIC = 0x99;
// ESPNow packet format for the receive buffer.
// Use this for peeking at the header of the next packet in the buffer.
typedef struct {
uint8_t magic; // = ESPNOW_MAGIC
uint8_t msg_len; // Length of the message
#if MICROPY_PY_ESPNOW_RSSI
uint32_t time_ms; // Timestamp (ms) when packet is received
int8_t rssi; // RSSI value (dBm) (-127 to 0)
#endif // MICROPY_PY_ESPNOW_RSSI
} __attribute__((packed)) espnow_hdr_t;
typedef struct {
espnow_hdr_t hdr; // The header
uint8_t peer[6]; // Peer address
uint8_t msg[0]; // Message is up to 250 bytes
} __attribute__((packed)) espnow_pkt_t;
// The maximum length of an espnow packet (bytes)
static const size_t MAX_PACKET_LEN = (
(sizeof(espnow_pkt_t) + ESP_NOW_MAX_DATA_LEN));
// Enough for 2 full-size packets: 2 * (6 + 7 + 250) = 526 bytes
// Will allocate an additional 7 bytes for buffer overhead
static const size_t DEFAULT_RECV_BUFFER_SIZE = (2 * MAX_PACKET_LEN);
// Default timeout (millisec) to wait for incoming ESPNow messages (5 minutes).
static const size_t DEFAULT_RECV_TIMEOUT_MS = (5 * 60 * 1000);
// Time to wait (millisec) for responses from sent packets: (2 seconds).
static const size_t DEFAULT_SEND_TIMEOUT_MS = (2 * 1000);
// Number of milliseconds to wait for pending responses to sent packets.
// This is a fallback which should never be reached.
static const mp_uint_t PENDING_RESPONSES_TIMEOUT_MS = 100;
static const mp_uint_t PENDING_RESPONSES_BUSY_POLL_MS = 10;
// The data structure for the espnow_singleton.
typedef struct _esp_espnow_obj_t {
mp_obj_base_t base;
ringbuf_t *recv_buffer; // A buffer for received packets
size_t recv_buffer_size; // The size of the recv_buffer
mp_int_t recv_timeout_ms; // Timeout for recv()
volatile size_t rx_packets; // # of received packets
size_t dropped_rx_pkts; // # of dropped packets (buffer full)
size_t tx_packets; // # of sent packets
volatile size_t tx_responses; // # of sent packet responses received
volatile size_t tx_failures; // # of sent packet responses failed
size_t peer_count; // Cache the # of peers for send(sync=True)
mp_obj_t recv_cb; // Callback when a packet is received
mp_obj_t recv_cb_arg; // Argument passed to callback
#if MICROPY_PY_ESPNOW_RSSI
mp_obj_t peers_table; // A dictionary of discovered peers
#endif // MICROPY_PY_ESPNOW_RSSI
} esp_espnow_obj_t;
const mp_obj_type_t esp_espnow_type;
// ### Initialisation and Config functions
//
// Return a pointer to the ESPNow module singleton
// If state == INITIALISED check the device has been initialised.
// Raises OSError if not initialised and state == INITIALISED.
static esp_espnow_obj_t *_get_singleton() {
return MP_STATE_PORT(espnow_singleton);
}
static esp_espnow_obj_t *_get_singleton_initialised() {
esp_espnow_obj_t *self = _get_singleton();
// assert(self);
if (self->recv_buffer == NULL) {
// Throw an espnow not initialised error
check_esp_err(ESP_ERR_ESPNOW_NOT_INIT);
}
return self;
}
// Allocate and initialise the ESPNow module as a singleton.
// Returns the initialised espnow_singleton.
static mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args,
size_t n_kw, const mp_obj_t *all_args) {
// The espnow_singleton must be defined in MICROPY_PORT_ROOT_POINTERS
// (see mpconfigport.h) to prevent memory allocated here from being
// garbage collected.
// NOTE: on soft reset the espnow_singleton MUST be set to NULL and the
// ESP-NOW functions de-initialised (see main.c).
esp_espnow_obj_t *self = MP_STATE_PORT(espnow_singleton);
if (self != NULL) {
return self;
}
self = m_new_obj(esp_espnow_obj_t);
self->base.type = &esp_espnow_type;
self->recv_buffer_size = DEFAULT_RECV_BUFFER_SIZE;
self->recv_timeout_ms = DEFAULT_RECV_TIMEOUT_MS;
self->recv_buffer = NULL; // Buffer is allocated in espnow_init()
self->recv_cb = mp_const_none;
#if MICROPY_PY_ESPNOW_RSSI
self->peers_table = mp_obj_new_dict(0);
// Prevent user code modifying the dict
mp_obj_dict_get_map(self->peers_table)->is_fixed = 1;
#endif // MICROPY_PY_ESPNOW_RSSI
// Set the global singleton pointer for the espnow protocol.
MP_STATE_PORT(espnow_singleton) = self;
return self;
}
// Forward declare the send and recv ESPNow callbacks
static void send_cb(const uint8_t *mac_addr, esp_now_send_status_t status);
static void recv_cb(const esp_now_recv_info_t *recv_info, const uint8_t *msg, int msg_len);
// ESPNow.init(): Initialise the data buffers and ESP-NOW functions.
// Initialise the Espressif ESPNOW software stack, register callbacks and
// allocate the recv data buffers.
// Returns None.
static mp_obj_t espnow_init(mp_obj_t _) {
esp_espnow_obj_t *self = _get_singleton();
if (self->recv_buffer == NULL) { // Already initialised
self->recv_buffer = m_new_obj(ringbuf_t);
ringbuf_alloc(self->recv_buffer, self->recv_buffer_size);
esp_initialise_wifi(); // Call the wifi init code in network_wlan.c
check_esp_err(esp_now_init());
check_esp_err(esp_now_register_recv_cb(recv_cb));
check_esp_err(esp_now_register_send_cb(send_cb));
}
return mp_const_none;
}
// ESPNow.deinit(): De-initialise the ESPNOW software stack, disable callbacks
// and deallocate the recv data buffers.
// Note: this function is called from main.c:mp_task() to cleanup before soft
// reset, so cannot be declared static and must guard against self == NULL;.
mp_obj_t espnow_deinit(mp_obj_t _) {
esp_espnow_obj_t *self = _get_singleton();
if (self != NULL && self->recv_buffer != NULL) {
check_esp_err(esp_now_unregister_recv_cb());
check_esp_err(esp_now_unregister_send_cb());
check_esp_err(esp_now_deinit());
self->recv_buffer->buf = NULL;
self->recv_buffer = NULL;
self->peer_count = 0; // esp_now_deinit() removes all peers.
self->tx_packets = self->tx_responses;
}
return mp_const_none;
}
static mp_obj_t espnow_active(size_t n_args, const mp_obj_t *args) {
esp_espnow_obj_t *self = _get_singleton();
if (n_args > 1) {
if (mp_obj_is_true(args[1])) {
espnow_init(self);
} else {
espnow_deinit(self);
}
}
return self->recv_buffer != NULL ? mp_const_true : mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_active_obj, 1, 2, espnow_active);
// ESPNow.config(['param'|param=value, ..])
// Get or set configuration values. Supported config params:
// buffer: size of buffer for rx packets (default=514 bytes)
// timeout: Default read timeout (default=300,000 milliseconds)
static mp_obj_t espnow_config(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
esp_espnow_obj_t *self = _get_singleton();
enum { ARG_get, ARG_rxbuf, ARG_timeout_ms, ARG_rate };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_ms, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MIN} },
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_rxbuf].u_int >= 0) {
self->recv_buffer_size = args[ARG_rxbuf].u_int;
}
if (args[ARG_timeout_ms].u_int != INT_MIN) {
self->recv_timeout_ms = args[ARG_timeout_ms].u_int;
}
if (args[ARG_rate].u_int >= 0) {
esp_initialise_wifi(); // Call the wifi init code in network_wlan.c
check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_STA, args[ARG_rate].u_int));
check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_AP, args[ARG_rate].u_int));
}
if (args[ARG_get].u_obj == MP_OBJ_NULL) {
return mp_const_none;
}
#define QS(x) (uintptr_t)MP_OBJ_NEW_QSTR(x)
// Return the value of the requested parameter
uintptr_t name = (uintptr_t)args[ARG_get].u_obj;
if (name == QS(MP_QSTR_rxbuf)) {
return mp_obj_new_int(self->recv_buffer_size);
} else if (name == QS(MP_QSTR_timeout_ms)) {
return mp_obj_new_int(self->recv_timeout_ms);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("unknown config param"));
}
#undef QS
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(espnow_config_obj, 1, espnow_config);
// ESPNow.irq(recv_cb)
// Set callback function to be invoked when a message is received.
static mp_obj_t espnow_irq(size_t n_args, const mp_obj_t *args) {
esp_espnow_obj_t *self = _get_singleton();
mp_obj_t recv_cb = args[1];
if (recv_cb != mp_const_none && !mp_obj_is_callable(recv_cb)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid handler"));
}
self->recv_cb = recv_cb;
self->recv_cb_arg = (n_args > 2) ? args[2] : mp_const_none;
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_irq_obj, 2, 3, espnow_irq);
// ESPnow.stats(): Provide some useful stats.
// Returns a tuple of:
// (tx_pkts, tx_responses, tx_failures, rx_pkts, dropped_rx_pkts)
static mp_obj_t espnow_stats(mp_obj_t _) {
const esp_espnow_obj_t *self = _get_singleton();
return NEW_TUPLE(
mp_obj_new_int(self->tx_packets),
mp_obj_new_int(self->tx_responses),
mp_obj_new_int(self->tx_failures),
mp_obj_new_int(self->rx_packets),
mp_obj_new_int(self->dropped_rx_pkts));
}
static MP_DEFINE_CONST_FUN_OBJ_1(espnow_stats_obj, espnow_stats);
#if MICROPY_PY_ESPNOW_RSSI
// ### Maintaining the peer table and reading RSSI values
//
// We maintain a peers table for several reasons, to:
// - support monitoring the RSSI values for all peers; and
// - to return unique bytestrings for each peer which supports more efficient
// application memory usage and peer handling.
// Lookup a peer in the peers table and return a reference to the item in the
// peers_table. Add peer to the table if it is not found (may alloc memory).
// Will not return NULL.
static mp_map_elem_t *_lookup_add_peer(esp_espnow_obj_t *self, const uint8_t *peer) {
// We do not want to allocate any new memory in the case that the peer
// already exists in the peers_table (which is almost all the time).
// So, we use a byte string on the stack and look that up in the dict.
mp_map_t *map = mp_obj_dict_get_map(self->peers_table);
mp_obj_str_t peer_obj = {{&mp_type_bytes}, 0, ESP_NOW_ETH_ALEN, peer};
mp_map_elem_t *item = mp_map_lookup(map, &peer_obj, MP_MAP_LOOKUP);
if (item == NULL) {
// If not found, add the peer using a new bytestring
map->is_fixed = 0; // Allow to modify the dict
mp_obj_t new_peer = mp_obj_new_bytes(peer, ESP_NOW_ETH_ALEN);
item = mp_map_lookup(map, new_peer, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
item->value = mp_obj_new_list(2, NULL);
map->is_fixed = 1; // Relock the dict
}
return item;
}
// Update the peers table with the new rssi value from a received pkt and
// return a reference to the item in the peers_table.
static mp_map_elem_t *_update_rssi(const uint8_t *peer, int8_t rssi, uint32_t time_ms) {
esp_espnow_obj_t *self = _get_singleton_initialised();
// Lookup the peer in the device table
mp_map_elem_t *item = _lookup_add_peer(self, peer);
mp_obj_list_t *list = MP_OBJ_TO_PTR(item->value);
list->items[0] = MP_OBJ_NEW_SMALL_INT(rssi);
list->items[1] = mp_obj_new_int(time_ms);
return item;
}
#endif // MICROPY_PY_ESPNOW_RSSI
// Return C pointer to byte memory string/bytes/bytearray in obj.
// Raise ValueError if the length does not match expected len.
static uint8_t *_get_bytes_len_rw(mp_obj_t obj, size_t len, mp_uint_t rw) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(obj, &bufinfo, rw);
if (bufinfo.len != len) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid buffer length"));
}
return (uint8_t *)bufinfo.buf;
}
static uint8_t *_get_bytes_len(mp_obj_t obj, size_t len) {
return _get_bytes_len_rw(obj, len, MP_BUFFER_READ);
}
static uint8_t *_get_bytes_len_w(mp_obj_t obj, size_t len) {
return _get_bytes_len_rw(obj, len, MP_BUFFER_WRITE);
}
// Return C pointer to the MAC address.
// Raise ValueError if mac_addr is wrong type or is not 6 bytes long.
static const uint8_t *_get_peer(mp_obj_t mac_addr) {
return mp_obj_is_true(mac_addr)
? _get_bytes_len(mac_addr, ESP_NOW_ETH_ALEN) : NULL;
}
// Copy data from the ring buffer - wait if buffer is empty up to timeout_ms
// 0: Success
// -1: Not enough data available to complete read (try again later)
// -2: Requested read is larger than buffer - will never succeed
static int ringbuf_get_bytes_wait(ringbuf_t *r, uint8_t *data, size_t len, mp_int_t timeout_ms) {
mp_uint_t start = mp_hal_ticks_ms();
int status = 0;
while (((status = ringbuf_get_bytes(r, data, len)) == -1)
&& (timeout_ms < 0 || (mp_uint_t)(mp_hal_ticks_ms() - start) < (mp_uint_t)timeout_ms)) {
MICROPY_EVENT_POLL_HOOK;
}
return status;
}
// ESPNow.recvinto(buffers[, timeout_ms]):
// Waits for an espnow message and copies the peer_addr and message into
// the buffers list.
// Arguments:
// buffers: (Optional) list of bytearrays to store return values.
// timeout_ms: (Optional) timeout in milliseconds (or None).
// Buffers should be a list: [bytearray(6), bytearray(250)]
// If buffers is 4 elements long, the rssi and timestamp values will be
// loaded into the 3rd and 4th elements.
// Default timeout is set with ESPNow.config(timeout=milliseconds).
// Return (None, None) on timeout.
static mp_obj_t espnow_recvinto(size_t n_args, const mp_obj_t *args) {
esp_espnow_obj_t *self = _get_singleton_initialised();
mp_int_t timeout_ms = ((n_args > 2 && args[2] != mp_const_none)
? mp_obj_get_int(args[2]) : self->recv_timeout_ms);
mp_obj_list_t *list = MP_OBJ_TO_PTR(args[1]);
if (!mp_obj_is_type(list, &mp_type_list) || list->len < 2) {
mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recvinto(): Invalid argument"));
}
mp_obj_array_t *msg = MP_OBJ_TO_PTR(list->items[1]);
if (mp_obj_is_type(msg, &mp_type_bytearray)) {
msg->len += msg->free; // Make all the space in msg array available
msg->free = 0;
}
#if MICROPY_PY_ESPNOW_RSSI
uint8_t peer_buf[ESP_NOW_ETH_ALEN];
#else
uint8_t *peer_buf = _get_bytes_len_w(list->items[0], ESP_NOW_ETH_ALEN);
#endif // MICROPY_PY_ESPNOW_RSSI
uint8_t *msg_buf = _get_bytes_len_w(msg, ESP_NOW_MAX_DATA_LEN);
// Read the packet header from the incoming buffer
espnow_hdr_t hdr;
if (ringbuf_get_bytes_wait(self->recv_buffer, (uint8_t *)&hdr, sizeof(hdr), timeout_ms) < 0) {
return MP_OBJ_NEW_SMALL_INT(0); // Timeout waiting for packet
}
int msg_len = hdr.msg_len;
// Check the message packet header format and read the message data
if (hdr.magic != ESPNOW_MAGIC
|| msg_len > ESP_NOW_MAX_DATA_LEN
|| ringbuf_get_bytes(self->recv_buffer, peer_buf, ESP_NOW_ETH_ALEN) < 0
|| ringbuf_get_bytes(self->recv_buffer, msg_buf, msg_len) < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recv(): buffer error"));
}
if (mp_obj_is_type(msg, &mp_type_bytearray)) {
// Set the length of the message bytearray.
size_t size = msg->len + msg->free;
msg->len = msg_len;
msg->free = size - msg_len;
}
#if MICROPY_PY_ESPNOW_RSSI
// Update rssi value in the peer device table
mp_map_elem_t *entry = _update_rssi(peer_buf, hdr.rssi, hdr.time_ms);
list->items[0] = entry->key; // Set first element of list to peer
if (list->len >= 4) {
list->items[2] = MP_OBJ_NEW_SMALL_INT(hdr.rssi);
list->items[3] = mp_obj_new_int(hdr.time_ms);
}
#endif // MICROPY_PY_ESPNOW_RSSI
return MP_OBJ_NEW_SMALL_INT(msg_len);
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_recvinto_obj, 2, 3, espnow_recvinto);
// Test if data is available to read from the buffers
static mp_obj_t espnow_any(const mp_obj_t _) {
esp_espnow_obj_t *self = _get_singleton_initialised();
return ringbuf_avail(self->recv_buffer) ? mp_const_true : mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_1(espnow_any_obj, espnow_any);
// Used by espnow_send() for sends() with sync==True.
// Wait till all pending sent packet responses have been received.
// ie. self->tx_responses == self->tx_packets.
static void _wait_for_pending_responses(esp_espnow_obj_t *self) {
mp_uint_t start = mp_hal_ticks_ms();
mp_uint_t t;
while (self->tx_responses < self->tx_packets) {
if ((t = mp_hal_ticks_ms() - start) > PENDING_RESPONSES_TIMEOUT_MS) {
mp_raise_OSError(MP_ETIMEDOUT);
}
if (t > PENDING_RESPONSES_BUSY_POLL_MS) {
// After 10ms of busy waiting give other tasks a look in.
MICROPY_EVENT_POLL_HOOK;
}
}
}
// ESPNow.send(peer_addr, message, [sync (=true), size])
// ESPNow.send(message)
// Send a message to the peer's mac address. Optionally wait for a response.
// If peer_addr == None or any non-true value, send to all registered peers.
// If sync == True, wait for response after sending.
// If size is provided it should be the number of bytes in message to send().
// Returns:
// True if sync==False and message sent successfully.
// True if sync==True and message is received successfully by all recipients
// False if sync==True and message is not received by at least one recipient
// Raises: EAGAIN if the internal espnow buffers are full.
static mp_obj_t espnow_send(size_t n_args, const mp_obj_t *args) {
esp_espnow_obj_t *self = _get_singleton_initialised();
// Check the various combinations of input arguments
const uint8_t *peer = (n_args > 2) ? _get_peer(args[1]) : NULL;
mp_obj_t msg = (n_args > 2) ? args[2] : (n_args == 2) ? args[1] : MP_OBJ_NULL;
bool sync = n_args <= 3 || args[3] == mp_const_none || mp_obj_is_true(args[3]);
// Get a pointer to the data buffer of the message
mp_buffer_info_t message;
mp_get_buffer_raise(msg, &message, MP_BUFFER_READ);
if (sync) {
// Flush out any pending responses.
// If the last call was sync==False there may be outstanding responses
// still to be received (possible many if we just had a burst of
// unsync send()s). We need to wait for all pending responses if this
// call has sync=True.
_wait_for_pending_responses(self);
}
int saved_failures = self->tx_failures;
// Send the packet - try, try again if internal esp-now buffers are full.
esp_err_t err;
mp_uint_t start = mp_hal_ticks_ms();
while ((ESP_ERR_ESPNOW_NO_MEM == (err = esp_now_send(peer, message.buf, message.len)))
&& (mp_uint_t)(mp_hal_ticks_ms() - start) < (mp_uint_t)DEFAULT_SEND_TIMEOUT_MS) {
MICROPY_EVENT_POLL_HOOK;
}
check_esp_err(err); // Will raise OSError if e != ESP_OK
// Increment the sent packet count. If peer_addr==NULL msg will be
// sent to all peers EXCEPT any broadcast or multicast addresses.
self->tx_packets += ((peer == NULL) ? self->peer_count : 1);
if (sync) {
// Wait for and tally all the expected responses from peers
_wait_for_pending_responses(self);
}
// Return False if sync and any peers did not respond.
return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures));
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_send_obj, 2, 4, espnow_send);
// ### The ESP_Now send and recv callback routines
//
// Callback triggered when a sent packet is acknowledged by the peer (or not).
// Just count the number of responses and number of failures.
// These are used in the send() logic.
static void send_cb(const uint8_t *mac_addr, esp_now_send_status_t status) {
esp_espnow_obj_t *self = _get_singleton();
self->tx_responses++;
if (status != ESP_NOW_SEND_SUCCESS) {
self->tx_failures++;
}
}
// Callback triggered when an ESP-Now packet is received.
// Write the peer MAC address and the message into the recv_buffer as an
// ESPNow packet.
// If the buffer is full, drop the message and increment the dropped count.
// Schedules the user callback if one has been registered (ESPNow.config()).
static void recv_cb(const esp_now_recv_info_t *recv_info, const uint8_t *msg, int msg_len) {
esp_espnow_obj_t *self = _get_singleton();
ringbuf_t *buf = self->recv_buffer;
// TODO: Test this works with ">".
if (sizeof(espnow_pkt_t) + msg_len >= ringbuf_free(buf)) {
self->dropped_rx_pkts++;
return;
}
espnow_hdr_t header;
header.magic = ESPNOW_MAGIC;
header.msg_len = msg_len;
#if MICROPY_PY_ESPNOW_RSSI
header.rssi = recv_info->rx_ctrl->rssi;
header.time_ms = mp_hal_ticks_ms();
#endif // MICROPY_PY_ESPNOW_RSSI
ringbuf_put_bytes(buf, (uint8_t *)&header, sizeof(header));
ringbuf_put_bytes(buf, recv_info->src_addr, ESP_NOW_ETH_ALEN);
ringbuf_put_bytes(buf, msg, msg_len);
self->rx_packets++;
if (self->recv_cb != mp_const_none) {
mp_sched_schedule(self->recv_cb, self->recv_cb_arg);
}
}
// ### Peer Management Functions
//
// Set the ESP-NOW Primary Master Key (pmk) (for encrypted communications).
// Raise OSError if ESP-NOW functions are not initialised.
// Raise ValueError if key is not a bytes-like object exactly 16 bytes long.
static mp_obj_t espnow_set_pmk(mp_obj_t _, mp_obj_t key) {
check_esp_err(esp_now_set_pmk(_get_bytes_len(key, ESP_NOW_KEY_LEN)));
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk);
// Common code for add_peer() and mod_peer() to process the args and kw_args:
// Raise ValueError if the LMK is not a bytes-like object of exactly 16 bytes.
// Raise TypeError if invalid keyword args or too many positional args.
// Return true if all args parsed correctly.
static bool _update_peer_info(
esp_now_peer_info_t *peer, size_t n_args,
const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_lmk, ARG_channel, ARG_ifidx, ARG_encrypt };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_lmk, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_channel, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_ifidx, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_encrypt, MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_lmk].u_obj != mp_const_none) {
mp_obj_t obj = args[ARG_lmk].u_obj;
peer->encrypt = mp_obj_is_true(obj);
if (peer->encrypt) {
// Key must be 16 bytes in length.
memcpy(peer->lmk, _get_bytes_len(obj, ESP_NOW_KEY_LEN), ESP_NOW_KEY_LEN);
}
}
if (args[ARG_channel].u_obj != mp_const_none) {
peer->channel = mp_obj_get_int(args[ARG_channel].u_obj);
}
if (args[ARG_ifidx].u_obj != mp_const_none) {
peer->ifidx = mp_obj_get_int(args[ARG_ifidx].u_obj);
}
if (args[ARG_encrypt].u_obj != mp_const_none) {
peer->encrypt = mp_obj_is_true(args[ARG_encrypt].u_obj);
}
return true;
}
// Update the cached peer count in self->peer_count;
// The peer_count ignores broadcast and multicast addresses and is used for the
// send() logic and is updated from add_peer(), mod_peer() and del_peer().
static void _update_peer_count() {
esp_espnow_obj_t *self = _get_singleton_initialised();
esp_now_peer_info_t peer = {0};
bool from_head = true;
int count = 0;
// esp_now_fetch_peer() skips over any broadcast or multicast addresses
while (esp_now_fetch_peer(from_head, &peer) == ESP_OK) {
from_head = false;
if (++count >= ESP_NOW_MAX_TOTAL_PEER_NUM) {
break; // Should not happen
}
}
self->peer_count = count;
}
// ESPNow.add_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]]) or
// ESPNow.add_peer(peer_mac, [lmk=b'0123456789abcdef'|b''|None|False],
// [channel=1..11|0], [ifidx=0|1], [encrypt=True|False])
// Positional args set to None will be left at defaults.
// Raise OSError if ESPNow.init() has not been called.
// Raise ValueError if mac or LMK are not bytes-like objects or wrong length.
// Raise TypeError if invalid keyword args or too many positional args.
// Return None.
static mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
esp_now_peer_info_t peer = {0};
memcpy(peer.peer_addr, _get_peer(args[1]), ESP_NOW_ETH_ALEN);
_update_peer_info(&peer, n_args - 2, args + 2, kw_args);
check_esp_err(esp_now_add_peer(&peer));
_update_peer_count();
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(espnow_add_peer_obj, 2, espnow_add_peer);
// ESPNow.del_peer(peer_mac): Unregister peer_mac.
// Raise OSError if ESPNow.init() has not been called.
// Raise ValueError if peer is not a bytes-like objects or wrong length.
// Return None.
static mp_obj_t espnow_del_peer(mp_obj_t _, mp_obj_t peer) {
uint8_t peer_addr[ESP_NOW_ETH_ALEN];
memcpy(peer_addr, _get_peer(peer), ESP_NOW_ETH_ALEN);
check_esp_err(esp_now_del_peer(peer_addr));
_update_peer_count();
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer);
// Convert a peer_info struct to python tuple
// Used by espnow_get_peer() and espnow_get_peers()
static mp_obj_t _peer_info_to_tuple(const esp_now_peer_info_t *peer) {
return NEW_TUPLE(
mp_obj_new_bytes(peer->peer_addr, MP_ARRAY_SIZE(peer->peer_addr)),
mp_obj_new_bytes(peer->lmk, MP_ARRAY_SIZE(peer->lmk)),
mp_obj_new_int(peer->channel),
mp_obj_new_int(peer->ifidx),
(peer->encrypt) ? mp_const_true : mp_const_false);
}
// ESPNow.get_peers(): Fetch peer_info records for all registered ESPNow peers.
// Raise OSError if ESPNow.init() has not been called.
// Return a tuple of tuples:
// ((peer_addr, lmk, channel, ifidx, encrypt),
// (peer_addr, lmk, channel, ifidx, encrypt), ...)
static mp_obj_t espnow_get_peers(mp_obj_t _) {
esp_espnow_obj_t *self = _get_singleton_initialised();
// Build and initialise the peer info tuple.
mp_obj_tuple_t *peerinfo_tuple = mp_obj_new_tuple(self->peer_count, NULL);
esp_now_peer_info_t peer = {0};
for (int i = 0; i < peerinfo_tuple->len; i++) {
int status = esp_now_fetch_peer((i == 0), &peer);
peerinfo_tuple->items[i] =
(status == ESP_OK ? _peer_info_to_tuple(&peer) : mp_const_none);
}
return peerinfo_tuple;
}
static MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_obj, espnow_get_peers);
#if MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS
// ESPNow.get_peer(peer_mac): Get the peer info for peer_mac as a tuple.
// Raise OSError if ESPNow.init() has not been called.
// Raise ValueError if mac or LMK are not bytes-like objects or wrong length.
// Return a tuple of (peer_addr, lmk, channel, ifidx, encrypt).
static mp_obj_t espnow_get_peer(mp_obj_t _, mp_obj_t arg1) {
esp_now_peer_info_t peer = {0};
memcpy(peer.peer_addr, _get_peer(arg1), ESP_NOW_ETH_ALEN);
check_esp_err(esp_now_get_peer(peer.peer_addr, &peer));
return _peer_info_to_tuple(&peer);
}
static MP_DEFINE_CONST_FUN_OBJ_2(espnow_get_peer_obj, espnow_get_peer);
// ESPNow.mod_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]]) or
// ESPNow.mod_peer(peer_mac, [lmk=b'0123456789abcdef'|b''|None|False],
// [channel=1..11|0], [ifidx=0|1], [encrypt=True|False])
// Positional args set to None will be left at current values.
// Raise OSError if ESPNow.init() has not been called.
// Raise ValueError if mac or LMK are not bytes-like objects or wrong length.
// Raise TypeError if invalid keyword args or too many positional args.
// Return None.
static mp_obj_t espnow_mod_peer(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
esp_now_peer_info_t peer = {0};
memcpy(peer.peer_addr, _get_peer(args[1]), ESP_NOW_ETH_ALEN);
check_esp_err(esp_now_get_peer(peer.peer_addr, &peer));
_update_peer_info(&peer, n_args - 2, args + 2, kw_args);
check_esp_err(esp_now_mod_peer(&peer));
_update_peer_count();
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(espnow_mod_peer_obj, 2, espnow_mod_peer);
// ESPNow.espnow_peer_count(): Get the number of registered peers.
// Raise OSError if ESPNow.init() has not been called.
// Return a tuple of (num_total_peers, num_encrypted_peers).
static mp_obj_t espnow_peer_count(mp_obj_t _) {
esp_now_peer_num_t peer_num = {0};
check_esp_err(esp_now_get_peer_num(&peer_num));
return NEW_TUPLE(
mp_obj_new_int(peer_num.total_num),
mp_obj_new_int(peer_num.encrypt_num));
}
static MP_DEFINE_CONST_FUN_OBJ_1(espnow_peer_count_obj, espnow_peer_count);
#endif
static const mp_rom_map_elem_t esp_espnow_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&espnow_config_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&espnow_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_stats), MP_ROM_PTR(&espnow_stats_obj) },
// Send and receive messages
{ MP_ROM_QSTR(MP_QSTR_recvinto), MP_ROM_PTR(&espnow_recvinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&espnow_any_obj) },
// Peer management functions
{ MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) },
{ MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_get_peers), MP_ROM_PTR(&espnow_get_peers_obj) },
#if MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS
{ MP_ROM_QSTR(MP_QSTR_mod_peer), MP_ROM_PTR(&espnow_mod_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_get_peer), MP_ROM_PTR(&espnow_get_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_peer_count), MP_ROM_PTR(&espnow_peer_count_obj) },
#endif // MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS
};
static MP_DEFINE_CONST_DICT(esp_espnow_locals_dict, esp_espnow_locals_dict_table);
static const mp_rom_map_elem_t espnow_globals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR__espnow) },
{ MP_ROM_QSTR(MP_QSTR_ESPNowBase), MP_ROM_PTR(&esp_espnow_type) },
{ MP_ROM_QSTR(MP_QSTR_MAX_DATA_LEN), MP_ROM_INT(ESP_NOW_MAX_DATA_LEN)},
{ MP_ROM_QSTR(MP_QSTR_ADDR_LEN), MP_ROM_INT(ESP_NOW_ETH_ALEN)},
{ MP_ROM_QSTR(MP_QSTR_KEY_LEN), MP_ROM_INT(ESP_NOW_KEY_LEN)},
{ MP_ROM_QSTR(MP_QSTR_MAX_TOTAL_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_TOTAL_PEER_NUM)},
{ MP_ROM_QSTR(MP_QSTR_MAX_ENCRYPT_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_ENCRYPT_PEER_NUM)},
};
static MP_DEFINE_CONST_DICT(espnow_globals_dict, espnow_globals_dict_table);
// ### Dummy Buffer Protocol support
// ...so asyncio can poll.ipoll() on this device
// Support ioctl(MP_STREAM_POLL, ) for asyncio
static mp_uint_t espnow_stream_ioctl(
mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
if (request != MP_STREAM_POLL) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
esp_espnow_obj_t *self = _get_singleton();
return (self->recv_buffer == NULL) ? 0 : // If not initialised
arg ^ (
// If no data in the buffer, unset the Read ready flag
((ringbuf_avail(self->recv_buffer) == 0) ? MP_STREAM_POLL_RD : 0) |
// If still waiting for responses, unset the Write ready flag
((self->tx_responses < self->tx_packets) ? MP_STREAM_POLL_WR : 0));
}
static const mp_stream_p_t espnow_stream_p = {
.ioctl = espnow_stream_ioctl,
};
#if MICROPY_PY_ESPNOW_RSSI
// Return reference to the dictionary of peers we have seen:
// {peer1: (rssi, time_sec), peer2: (rssi, time_msec), ...}
// where:
// peerX is a byte string containing the 6-byte mac address of the peer,
// rssi is the wifi signal strength from the last msg received
// (in dBm from -127 to 0)
// time_sec is the time in milliseconds since device last booted.
static void espnow_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
esp_espnow_obj_t *self = _get_singleton();
if (dest[0] != MP_OBJ_NULL) { // Only allow "Load" operation
return;
}
if (attr == MP_QSTR_peers_table) {
dest[0] = self->peers_table;
return;
}
dest[1] = MP_OBJ_SENTINEL; // Attribute not found
}
#endif // MICROPY_PY_ESPNOW_RSSI
MP_DEFINE_CONST_OBJ_TYPE(
esp_espnow_type,
MP_QSTR_ESPNowBase,
MP_TYPE_FLAG_NONE,
make_new, espnow_make_new,
#if MICROPY_PY_ESPNOW_RSSI
attr, espnow_attr,
#endif // MICROPY_PY_ESPNOW_RSSI
protocol, &espnow_stream_p,
locals_dict, &esp_espnow_locals_dict
);
const mp_obj_module_t mp_module_espnow = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&espnow_globals_dict,
};
MP_REGISTER_MODULE(MP_QSTR__espnow, mp_module_espnow);
MP_REGISTER_ROOT_POINTER(struct _esp_espnow_obj_t *espnow_singleton);
#endif // MICROPY_PY_ESPNOW