forked from vsitzmann/siren
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdf_meshing.py
144 lines (111 loc) · 4.12 KB
/
sdf_meshing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
'''From the DeepSDF repository https://github.com/facebookresearch/DeepSDF
'''
#!/usr/bin/env python3
import logging
import numpy as np
import plyfile
import skimage.measure
import time
import torch
def create_mesh(
decoder, filename, N=256, max_batch=64 ** 3, offset=None, scale=None
):
start = time.time()
ply_filename = filename
decoder.eval()
# NOTE: the voxel_origin is actually the (bottom, left, down) corner, not the middle
voxel_origin = [-1, -1, -1]
voxel_size = 2.0 / (N - 1)
overall_index = torch.arange(0, N ** 3, 1, out=torch.LongTensor())
samples = torch.zeros(N ** 3, 4)
# transform first 3 columns
# to be the x, y, z index
samples[:, 2] = overall_index % N
samples[:, 1] = (overall_index.long() / N) % N
samples[:, 0] = ((overall_index.long() / N) / N) % N
# transform first 3 columns
# to be the x, y, z coordinate
samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2]
samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1]
samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0]
num_samples = N ** 3
samples.requires_grad = False
head = 0
while head < num_samples:
print(head)
sample_subset = samples[head : min(head + max_batch, num_samples), 0:3].cuda()
samples[head : min(head + max_batch, num_samples), 3] = (
decoder(sample_subset)
.squeeze()#.squeeze(1)
.detach()
.cpu()
)
head += max_batch
sdf_values = samples[:, 3]
sdf_values = sdf_values.reshape(N, N, N)
end = time.time()
print("sampling takes: %f" % (end - start))
convert_sdf_samples_to_ply(
sdf_values.data.cpu(),
voxel_origin,
voxel_size,
ply_filename + ".ply",
offset,
scale,
)
def convert_sdf_samples_to_ply(
pytorch_3d_sdf_tensor,
voxel_grid_origin,
voxel_size,
ply_filename_out,
offset=None,
scale=None,
):
"""
Convert sdf samples to .ply
:param pytorch_3d_sdf_tensor: a torch.FloatTensor of shape (n,n,n)
:voxel_grid_origin: a list of three floats: the bottom, left, down origin of the voxel grid
:voxel_size: float, the size of the voxels
:ply_filename_out: string, path of the filename to save to
This function adapted from: https://github.com/RobotLocomotion/spartan
"""
start_time = time.time()
numpy_3d_sdf_tensor = pytorch_3d_sdf_tensor.numpy()
verts, faces, normals, values = np.zeros((0, 3)), np.zeros((0, 3)), np.zeros((0, 3)), np.zeros(0)
try:
verts, faces, normals, values = skimage.measure.marching_cubes_lewiner(
numpy_3d_sdf_tensor, level=0.0, spacing=[voxel_size] * 3
)
except:
pass
# transform from voxel coordinates to camera coordinates
# note x and y are flipped in the output of marching_cubes
mesh_points = np.zeros_like(verts)
mesh_points[:, 0] = voxel_grid_origin[0] + verts[:, 0]
mesh_points[:, 1] = voxel_grid_origin[1] + verts[:, 1]
mesh_points[:, 2] = voxel_grid_origin[2] + verts[:, 2]
# apply additional offset and scale
if scale is not None:
mesh_points = mesh_points / scale
if offset is not None:
mesh_points = mesh_points - offset
# try writing to the ply file
num_verts = verts.shape[0]
num_faces = faces.shape[0]
verts_tuple = np.zeros((num_verts,), dtype=[("x", "f4"), ("y", "f4"), ("z", "f4")])
for i in range(0, num_verts):
verts_tuple[i] = tuple(mesh_points[i, :])
faces_building = []
for i in range(0, num_faces):
faces_building.append(((faces[i, :].tolist(),)))
faces_tuple = np.array(faces_building, dtype=[("vertex_indices", "i4", (3,))])
el_verts = plyfile.PlyElement.describe(verts_tuple, "vertex")
el_faces = plyfile.PlyElement.describe(faces_tuple, "face")
ply_data = plyfile.PlyData([el_verts, el_faces])
logging.debug("saving mesh to %s" % (ply_filename_out))
ply_data.write(ply_filename_out)
logging.debug(
"converting to ply format and writing to file took {} s".format(
time.time() - start_time
)
)