-
Notifications
You must be signed in to change notification settings - Fork 4
/
index.c
262 lines (238 loc) · 6.24 KB
/
index.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#include <assert.h>
#include "mgpriv.h"
#include "khashl.h"
#include "kthread.h"
#include "kvec-km.h"
#include "sys.h"
#include "graphUtils.h"
#define idx_hash(a) ((a)>>1)
#define idx_eq(a, b) ((a)>>1 == (b)>>1)
KHASHL_MAP_INIT(KH_LOCAL, idxhash_t, mg_hidx, uint64_t, uint64_t, idx_hash, idx_eq)
typedef struct mg_idx_bucket_s {
mg128_v a; // (minimizer, position) array
int32_t n; // size of the _p_ array
uint64_t *p; // position array for minimizers appearing >1 times
void *h; // hash table indexing _p_ and minimizers appearing once
} mg_idx_bucket_t;
mg_idx_t *mg_idx_init(int k, int w, int b)
{
mg_idx_t *gi;
if (k*2 < b) b = k * 2;
if (w < 1) w = 1;
KCALLOC(0, gi, 1);
gi->w = w, gi->k = k, gi->b = b;
KCALLOC(0, gi->B, 1<<b);
return gi;
}
void mg_idx_destroy(mg_idx_t *gi)
{
uint32_t i;
if (gi == 0) return;
if (gi->B) {
for (i = 0; i < 1U<<gi->b; ++i) {
free(gi->B[i].p);
free(gi->B[i].a.a);
mg_hidx_destroy((idxhash_t*)gi->B[i].h);
}
free(gi->B);
}
gfa_edseq_destroy(gi->n_seg, gi->es);
free(gi);
}
/****************
* Index access *
****************/
const uint64_t *mg_idx_hget(const void *h_, const uint64_t *q, int suflen, uint64_t minier, int *n)
{
khint_t k;
const idxhash_t *h = (const idxhash_t*)h_;
*n = 0;
if (h == 0) return 0;
k = mg_hidx_get(h, minier>>suflen<<1);
if (k == kh_end(h)) return 0;
if (kh_key(h, k)&1) { // special casing when there is only one k-mer
*n = 1;
return &kh_val(h, k);
} else {
*n = (uint32_t)kh_val(h, k);
return &q[kh_val(h, k)>>32];
}
}
const uint64_t *mg_idx_get(const mg_idx_t *gi, uint64_t minier, int *n)
{
int mask = (1<<gi->b) - 1;
mg_idx_bucket_t *b = &gi->B[minier&mask];
return mg_idx_hget(b->h, b->p, gi->b, minier, n);
}
void mg_idx_cal_quantile(const mg_idx_t *gi, int32_t m, float f[], int32_t q[])
{
int32_t i;
uint64_t n = 0;
khint_t *a, k;
for (i = 0; i < 1<<gi->b; ++i)
if (gi->B[i].h) n += kh_size((idxhash_t*)gi->B[i].h);
a = (uint32_t*)malloc(n * 4);
for (i = 0, n = 0; i < 1<<gi->b; ++i) {
idxhash_t *h = (idxhash_t*)gi->B[i].h;
if (h == 0) continue;
for (k = 0; k < kh_end(h); ++k) {
if (!kh_exist(h, k)) continue;
a[n++] = kh_key(h, k)&1? 1 : (uint32_t)kh_val(h, k);
}
}
for (i = 0; i < m; ++i)
q[i] = ks_ksmall_uint32_t(n, a, (size_t)((1.0 - (double)f[i]) * n));
free(a);
}
/***************
* Index build *
***************/
static void mg_idx_add(mg_idx_t *gi, int n, const mg128_t *a)
{
int i, mask = (1<<gi->b) - 1;
for (i = 0; i < n; ++i) {
mg128_v *p = &gi->B[a[i].x>>8&mask].a;
kv_push(mg128_t, 0, *p, a[i]);
}
}
void mg_idx_hfree(void *h_)
{
idxhash_t *h = (idxhash_t*)h_;
if (h == 0) return;
mg_hidx_destroy(h);
}
void *mg_idx_a2h(void *km, int32_t n_a, mg128_t *a, int suflen, uint64_t **q_, int32_t *n_)
{
int32_t N, n, n_keys;
int32_t j, start_a, start_q;
idxhash_t *h;
uint64_t *q;
*q_ = 0, *n_ = 0;
if (n_a == 0) return 0;
// sort by minimizer
radix_sort_128x(a, a + n_a);
// count and preallocate
for (j = 1, n = 1, n_keys = 0, N = 0; j <= n_a; ++j) {
if (j == n_a || a[j].x>>8 != a[j-1].x>>8) {
++n_keys;
if (n > 1) N += n;
n = 1;
} else ++n;
}
h = mg_hidx_init2(km);
mg_hidx_resize(h, n_keys);
KCALLOC(km, q, N);
*q_ = q, *n_ = N;
// create the hash table
for (j = 1, n = 1, start_a = start_q = 0; j <= n_a; ++j) {
if (j == n_a || a[j].x>>8 != a[j-1].x>>8) {
khint_t itr;
int absent;
mg128_t *p = &a[j-1];
itr = mg_hidx_put(h, p->x>>8>>suflen<<1, &absent);
assert(absent && j == start_a + n);
if (n == 1) {
kh_key(h, itr) |= 1;
kh_val(h, itr) = p->y;
} else {
int k;
for (k = 0; k < n; ++k)
q[start_q + k] = a[start_a + k].y;
radix_sort_gfa64(&q[start_q], &q[start_q + n]); // sort by position; needed as in-place radix_sort_128x() is not stable
kh_val(h, itr) = (uint64_t)start_q<<32 | n;
start_q += n;
}
start_a = j, n = 1;
} else ++n;
}
assert(N == start_q);
return h;
}
static void worker_post(void *g, long i, int tid)
{
mg_idx_t *gi = (mg_idx_t*)g;
mg_idx_bucket_t *b = &gi->B[i];
if (b->a.n == 0) return;
b->h = (idxhash_t*)mg_idx_a2h(0, b->a.n, b->a.a, gi->b, &b->p, &b->n);
kfree(0, b->a.a);
b->a.n = b->a.m = 0, b->a.a = 0;
}
int mg_gfa_overlap(const gfa_t *g)
{
int64_t i;
for (i = 0; i < g->n_arc; ++i) // non-zero overlap
if (g->arc[i].ov != 0 || g->arc[i].ow != 0)
return 1;
return 0;
}
mg_idx_t *mg_index_core(gfa_t *g, int k, int w, int b, int n_threads)
{
mg_idx_t *gi;
mg128_v a = {0,0,0};
int i;
if (mg_gfa_overlap(g)) {
if (mg_verbose >= 1)
fprintf(stderr, "[E::%s] minigraph doesn't work with graphs containing overlapping segments\n", __func__);
return 0;
}
gi = mg_idx_init(k, w, b);
gi->g = g;
for (i = 0; i < g->n_seg; ++i) {
gfa_seg_t *s = &g->seg[i];
a.n = 0;
mg_sketch(0, s->seq, s->len, w, k, i, &a); // TODO: this can be parallelized
mg_idx_add(gi, a.n, a.a);
}
free(a.a);
kt_for(n_threads, worker_post, gi, 1<<gi->b);
return gi;
}
/* Pass parameters */
params* par;
void pass_par(bool ¶m_z, float &scale_factor)
{
par = new params();
par->param_z = param_z;
par->scale_factor = scale_factor;
}
mg_idx_t *mg_index(gfa_t *g, const mg_idxopt_t *io, int n_threads, mg_mapopt_t *mo)
{
int32_t i, j;
mg_idx_t *gi;
for (i = 0; i < g->n_seg; ++i) { // uppercase
gfa_seg_t *s = &g->seg[i];
for (j = 0; j < s->len; ++j)
if (s->seq[j] >= 'a' && s->seq[j] <= 'z')
s->seq[j] -= 32;
}
gi = mg_index_core(g, io->k, io->w, io->bucket_bits, n_threads);
if (gi == 0) return 0;
gi->es = gfa_edseq_init(gi->g);
gi->n_seg = g->n_seg;
/* Indexing */
graphUtils *graphOp = new graphUtils(g);
graphOp->param_z = par->param_z;
graphOp->read_graph();
omp_set_dynamic(0);
omp_set_num_threads(n_threads);
graphOp->scale_factor = par->scale_factor;
// graphOp->print_graph();
graphOp->Connected_components();
int cycle_count = graphOp->is_cyclic();
if (cycle_count == 0)
{
graphOp->topologicat_sort();
graphOp->MPC();
graphOp->MPC_index();
}else
{
std::cerr << "[Please provide acyclic rGFA]" << std::endl;
exit(0);
}
get_Op(graphOp); // pass pointer to map-algo.c
if (mg_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] indexed the graph\n", __func__,
realtime() - mg_realtime0, cputime() / (realtime() - mg_realtime0));
if (mo) mg_opt_update(gi, mo, 0);
return gi;
}