-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
125 lines (109 loc) · 5.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import pandas as pd
import argparse
from datetime import datetime
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.backend import random_normal
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
# from tensorflow.keras import saving
from utils import encoder_model, decoder_model, VAE, get_image_data, VAECallback, TotalLoss
# ----------------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------------
# Function to parse command line arguments
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--image-dir', type=str, help='Path to the image data', default= r'Data')
parser.add_argument('--logs-dir', type=str, help='Path to store logs', default=r"logs")
parser.add_argument('--output-image-shape', type=int, default=56)
parser.add_argument('--filters', type=int, nargs='+', default=[32, 64])
parser.add_argument('--dense-layer-dim', type=int, default=16)
parser.add_argument('--latent-dim', type=int, default=6)
parser.add_argument('--beta', type=float, default=1.0)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--learning-rate', type=float, default=1e-4)
parser.add_argument('--patience', type=int, default=10)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--train-split', type=float, default=0.8)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_arguments()
IMAGE_DIR = args.image_dir
LOGS_DIR = args.logs_dir
all_image_paths = get_image_data(IMAGE_DIR)
image_count = len(all_image_paths)
TRAIN_SPLIT = args.train_split
OUTPUT_IMAGE_SHAPE = args.output_image_shape
INPUT_SHAPE = (OUTPUT_IMAGE_SHAPE, OUTPUT_IMAGE_SHAPE, 1)
FILTERS = args.filters
DENSE_LAYER_DIM = args.dense_layer_dim
LATENT_DIM = args.latent_dim
BATCH_SIZE = args.batch_size
EPOCHS = args.epochs
LEARNING_RATE = args.learning_rate
LOGDIR = os.path.join(LOGS_DIR, datetime.now().strftime("%Y%m%d-%H%M%S"))
print(LOGDIR)
os.mkdir(LOGDIR)
df_train = pd.DataFrame({'image_paths': all_image_paths[:int(image_count*TRAIN_SPLIT)]})
df_test = pd.DataFrame({'image_paths': all_image_paths[int(image_count*TRAIN_SPLIT):]})
train_datagen_args = dict(
rescale=1.0 / 255, # Normalize pixel values between 0 and 1
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
)
test_datagen_args = dict(rescale=1.0 / 255)
train_datagen = ImageDataGenerator(**train_datagen_args)
test_datagen = ImageDataGenerator(**test_datagen_args)
# Use flow_from_dataframe to generate data batches
train_data_generator = train_datagen.flow_from_dataframe(
dataframe=df_train,
color_mode='grayscale',
x_col='image_paths',
y_col=None,
target_size=(OUTPUT_IMAGE_SHAPE, OUTPUT_IMAGE_SHAPE), # Specify the desired size of the input images
batch_size=BATCH_SIZE,
class_mode=None, # Set to None since there are no labels
shuffle=True # Set to True for randomizing the order of the images
)
test_data_generator = test_datagen.flow_from_dataframe(
dataframe=df_test,
color_mode='grayscale',
x_col='image_paths',
y_col=None,
target_size=(OUTPUT_IMAGE_SHAPE, OUTPUT_IMAGE_SHAPE), # Specify the desired size of the input images
batch_size=BATCH_SIZE,
class_mode=None, # Set to None since there are no labels
shuffle=True # Set to True for randomizing the order of the images
)
encoder, encoder_layers_dim = encoder_model(input_shape = INPUT_SHAPE, filters=FILTERS, dense_layer_dim=DENSE_LAYER_DIM, latent_dim=LATENT_DIM)
print(encoder.summary())
print(encoder_layers_dim)
decoder = decoder_model(encoder_layers_dim)
print(decoder.summary())
vae = VAE(encoder, decoder)
vae.compile(optimizer=Adam(learning_rate=LEARNING_RATE), metrics=[TotalLoss()])
vae_callback = VAECallback(vae, test_data_generator, LOGDIR)
tensorboard_cb = TensorBoard(log_dir=LOGDIR, histogram_freq=1)
vae_path = os.path.join(LOGDIR, "vae")
os.mkdir(vae_path)
# encoder_path = os.path.join(LOGDIR, "encoder")
# decoder_path = os.path.join(LOGDIR, "decoder")
checkpoint_cb = ModelCheckpoint(filepath=vae_path, save_weights_only=True, verbose=1)
earlystopping_cb = EarlyStopping(
monitor="total_loss",
min_delta=1e-2,
patience=5,
verbose=1,
)
history = vae.fit(
train_data_generator,
epochs=EPOCHS,
validation_data=test_data_generator,
callbacks=[tensorboard_cb, vae_callback, checkpoint_cb]
)