-
Notifications
You must be signed in to change notification settings - Fork 1
/
sia.R
374 lines (326 loc) · 12.6 KB
/
sia.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
###########################################################
# SUPPLEMENTARY IMMUNIZATION ACTIVITIES
#
# SIA data needs some careful handling. All SIA data extraction
# functionality in one place.
#
###########################################################
# ---------------------------------------------------------
# Extract SIA coverage data
# ---------------------------------------------------------
coverage_sia = function(vimc_countries_dt) {
message(" > Coverage data: SIA")
# ---- Set up ----
# Campaign activities (or 'all' for non-VIMC pathogens)
d_v_a_dt = table("d_v_a") %>%
filter(source != "extern") %>%
bind_rows(table("d_v_a_extern")) %>%
filter(activity %in% c("campaign", "all")) %>%
select(d_v_a_id, vaccine)
# Data dictionary for converting to v_a
data_dict = table("vaccine_dict") %>%
left_join(y = d_v_a_dt,
by = "vaccine") %>%
left_join(y = table("regimen"),
by = "vaccine") %>%
filter(!is.na(d_v_a_id)) %>%
select(d_v_a_id, vaccine, intervention, schedule) %>%
arrange(d_v_a_id, intervention)
# ---- Load and wrangle data ----
# Load and wrangle SIA data
data_dt = fread(paste0(o$pth$input, "sia_coverage.csv")) %>%
setnames(names(.), tolower(names(.))) %>%
# Select columns of interest...
select(intervention = intervention_code,
country = iso3_code, # Country ISO3 codes,
sia_type = activity_type_code, # Catch up, national day, etc
status = activity_status, # Done, ongoing, planned, etc
age_group = activity_age_group,
cohort = target,
doses, coverage, matches("year$|month$|day$")) %>%
# Format data types...
mutate_if(is.character, tolower) %>%
mutate(across(.cols = c(cohort, coverage, doses),
.fns = as.numeric)) %>%
# Attempt to impute doses and then filter out the unworkable...
mutate(doses = ifelse(is.na(doses), cohort * coverage, doses)) %>%
filter(doses > 0) %>%
# Remove any activities not of interest...
filter(!status %in% c("cancelled", "postponed"),
!sia_type %in% c("routine")) %>%
select(-status, -sia_type) %>%
# Remove any unknown countries...
mutate(country = toupper(country)) %>%
filter(country %in% all_countries()) %>%
# Remove any unknown interventions...
filter(intervention %in% unique(data_dict$intervention)) %>%
arrange(intervention, country) %>%
# Deal with dates...
format_sia_dates() %>%
impute_sia_dates() %>%
# Parse age groups...
parse_age_groups()
# intervention_dt = data_dt %>%
# left_join(y = data_dict,
# by = "intervention",
# relationship = "many-to-many") %>%
# mutate(raw = doses / (schedule * pop),
# coverage = pmin(raw, o$max_coverage)) %>%
# select(intervention, vaccine, coverage)
#
# g = ggplot(intervention_dt) +
# aes(x = coverage,
# colour = intervention,
# fill = intervention) +
# geom_histogram(
# binwidth = 0.05,
# alpha = 0.2) +
# facet_wrap(
# facets = vars(vaccine),
# scales = "free_y")
# Interpret 'interventions'
sia_dt = data_dt %>%
# Convert to d-v-a...
left_join(y = data_dict,
by = "intervention",
relationship = "many-to-many") %>%
filter(!is.na(d_v_a_id)) %>%
# Remove entires already covered by VIMC...
left_join(y = vimc_countries_dt,
by = c("d_v_a_id", "country", "year")) %>%
filter(is.na(source)) %>%
select(-source) %>%
# Calculate FVPs...
mutate(sheduled_doses = doses / schedule) %>%
calculate_fvps() %>%
# Tidy up...
arrange(d_v_a_id, country, year, age) %>%
mutate(source = "sia") %>%
as.data.table()
return(sia_dt)
}
# ---------------------------------------------------------
# SIA database has numerous date columns - combine into useable format
# ---------------------------------------------------------
format_sia_dates = function(sia_dt) {
# Define date columns in raw data set
date_cols = c("plan", "postponed", "done")
date_type = c("start", "end")
# Function to create date strings from multiple columns
date_fn = function(col) {
# Combine all columns to create y-m-d string
date_str = paste(
sia_dt[[paste0(col, "_year")]],
sia_dt[[paste0(col, "_month")]],
sia_dt[[paste0(col, "_day")]],
sep = ".")
# Trivialise any dates containing NA
date_str[grepl("NA", date_str)] = ""
return(date_str)
}
# Loop through date columns to create a single variable
for (i in date_cols) {
for (j in date_type) {
# Construct new column name
col = paste(i, j, sep = "_")
# Apend this newly compiled column
sia_dt[[col]] = date_fn(col)
}
}
# First and last dates we are interested in
data_from = paste(min(o$years), 1, 1, sep = ".")
data_to = paste(max(o$years + 1), 1, 1, sep = ".")
# Create single start and end columns
date_dt = sia_dt %>%
mutate(start_date = paste0(plan_start, postponed_start, done_start),
end_date = paste0(plan_end, postponed_end, done_end)) %>%
# Convert to date format...
mutate(start_date = format_date(start_date),
end_date = format_date(end_date)) %>%
# Remove the numerous now-redundant date columns...
select(-matches("year$|month$|day$"),
-ends_with("start"),
-ends_with("end")) %>%
# Remove ineligible dates...
filter(!is.na(start_date),
start_date >= format_date(data_from),
start_date < format_date(data_to)) %>%
arrange(intervention, country, start_date)
return(date_dt)
}
# ---------------------------------------------------------
# Impute missing end dates, distribute over time, and sum over years
# ---------------------------------------------------------
impute_sia_dates = function(sia_dt) {
average_fn = "mean" # OPTION: "mean" or "median"
# Impute missing end dates
impute_dt = sia_dt %>%
# Calculate average duration...
mutate(days = as.numeric(end_date - start_date),
average = get(average_fn)(days, na.rm = TRUE)) %>%
# Fill in any missing end dates with duration average...
mutate(fix_date = start_date + average,
end_date = if_else(is.na(end_date), fix_date, end_date)) %>%
select(-days, -average, -fix_date)
# Melt monthly dates to tidy format...
# Single datatable column of all possible months
all_months_dt =
seq(from = floor_date(min(impute_dt$start_date), "month"),
to = floor_date(max(impute_dt$end_date), "month"),
by = "month") %>%
as.character() %>%
as_named_dt("month")
# All months to distibute doses across (for which campaign has been 'run')
#
# NOTE: dtplyr would be handy here, but isn't yet implemented for rowwise() operations
run_months_dt = impute_dt %>%
mutate(start_date = floor_date(start_date, "month"), # Beginning of month
end_date = floor_date(end_date, "month"), # Beginning of month
end_date = pmax(start_date, end_date)) %>% # In case of end_date < start_date
rowwise() %>%
mutate(run_months = seq(start_date, end_date, by = "month") %>% # All months to distibute across
paste(collapse = " & ") %>%
as.character(),
n_months = str_count(run_months, "&") + 1) %>% # Number of months to distibute across
ungroup() %>%
as.data.table()
# Expand for all possible and distrubte doses across months
#
# NOTES:
# - We'll use this 'all months' dt for pretty plotting
# - Whilst this works, there could well be a more efficient way
sia_month_dt = run_months_dt %>%
expand_grid(all_months_dt) %>% # Full factorial for all possible months
mutate(value = str_detect(run_months, month)) %>% # Successful matches
mutate(month = format_date(month),
doses = (doses / n_months) * value) %>% # Divide total doses across the months
select(-start_date, -end_date, -run_months, -n_months) %>%
arrange(intervention, country, month) %>%
as.data.table()
# Remove these trivial dose entries and sum over year
sia_year_dt = sia_month_dt %>%
lazy_dt() %>%
filter(doses > 0) %>%
mutate(year = year(month)) %>%
group_by(intervention, country, year, age_group) %>%
summarise(doses = sum(doses)) %>%
ungroup() %>%
as.data.table()
# Sanity check that we haven't changed number of doses
# if (abs(sum(sia_year_dt$doses) - check_doses) > 1e-3)
# stop("We seem to have gained/lost doses here")
return(sia_year_dt)
}
# ---------------------------------------------------------
# Parse age groups into age ranges
# ---------------------------------------------------------
parse_age_groups = function(sia_dt) {
# All unique age group strings to parse
age_groups = sort(unique(sia_dt$age_group))
# Initialise working datatable
group_dt = data.table(
group = age_groups,
age = age_groups)
# ---- Parse age group stings ----
# Regular expression to remove
exp_rm = c(",.+", "\n.+", "\\+", "\\=", "[a-z, ]")
# Regular expression to substitute
exp_sub = c(
"&" = "and",
"^<" = "0&",
"^=<" = "0&",
"^>" = "100&",
"^>=" = "100&",
"-<" = "&",
"->" = "&",
"-" = "&",
" y" = "#",
" m" = "@")
# Several named special cases
exp_txt = c(
"all ages" = "0-95",
"adolescents" = "10-19",
"adults" = "18-60",
"children" = "1-12",
"elderly" = "60-95",
"school" = "5-16",
"travellers" = "18-60",
"women" = "18-60")
# Parse key characters
for (exp in names(exp_sub))
group_dt[grepl(exp, age), age := gsub(exp, exp_sub[[exp]], age)]
# Remove certain characters
for (exp in exp_rm)
group_dt[grepl(exp, age), age := gsub(exp, "", age)]
# Parse strings that we don't yet have info for
for (exp in names(exp_txt))
group_dt[grepl(exp, group) & age == "",
age := gsub("-", "&", exp_txt[[exp]])]
# ---- Apply parsed ages to data ----
# Construct age group - age range dictionary
age_dict = group_dt %>%
mutate(n = str_count(age, "&"),
age = ifelse(n > 1, "", age)) %>%
# Split at denominator if it exists...
separate_wider_delim(
cols = age,
delim = "&",
names = c("a1", "a2"),
too_few = "align_start",
cols_remove = FALSE) %>%
# Extract units - years (#) or months (@)...
mutate(u1 = str_extract(a1, "#|@"),
u2 = str_extract(a2, "#|@"),
u1 = ifelse(is.na(u1), u2, u1),
u2 = ifelse(is.na(u2), u1, u2)) %>%
# Assume units are years if still trivial...
mutate(u1 = ifelse(is.na(u1), "#", u1),
u2 = ifelse(is.na(u2), "#", u2)) %>%
# Convert ages to numeric...
mutate(a1 = str_remove(a1, "(#|@).*"),
a2 = str_remove(a2, "(#|@).*"),
a1 = suppressWarnings(as.numeric(a1)),
a2 = suppressWarnings(as.numeric(a2))) %>%
# Convert all ages to year format...
mutate(y1 = ifelse(u1 == "@", a1 / 12, a1),
y2 = ifelse(u2 == "@", a2 / 12, a2)) %>%
# Deal with missing and infeasible values...
mutate(y1 = ifelse(y1 > 1e3, NA, y1),
y1 = pmin(y1, max(o$ages)),
y2 = ifelse(is.na(y2), y1, y2)) %>%
replace_na(list(y1 = 0, y2 = 0)) %>%
# Ensure correct order and round...
mutate(age_min = round(pmin(y1, y2)),
age_max = round(pmax(y1, y2))) %>%
# Expand out for single age bins...
select(age_group = group, age_min, age_max) %>%
expand_grid(age = o$ages) %>%
filter(age >= age_min,
age <= age_max) %>%
# Tidy up...
select(age_group, age) %>%
as.data.table()
# Convert to long form and distribute across age bins
age_dt = sia_dt %>%
lazy_dt() %>%
rename(total_doses = doses) %>%
# Expand with parsed age bins...
left_join(y = age_dict,
by = "age_group",
relationship = "many-to-many") %>%
# Append population size...
left_join(y = table("wpp_pop"),
by = c("country", "year", "age")) %>%
# Distribute across age bins...
group_by(intervention, country, year, age_group) %>%
mutate(doses = total_doses * pop / sum(pop)) %>%
ungroup() %>%
# Tidy up...
select(intervention, country, year, age, doses, pop) %>%
as.data.table()
# Sanity check that we haven't lost/gained doses
dose_diff = sum(sia_dt$doses) - sum(age_dt$doses)
if (abs(dose_diff) > 1e-6)
stop("Age disaggregation failed")
return(age_dt)
}