-
Notifications
You must be signed in to change notification settings - Fork 0
/
posteriortimeparameterspenalized.R
132 lines (76 loc) · 4.21 KB
/
posteriortimeparameterspenalized.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
posteriortimeparameterspenalized = function(c,Y, That, lambda2, tau2, sigma2, beta0, betahat, K, epsilon, W, beta,ro,r, si, sig2.data,N, D ) {
numclust <- table(factor(c, levels = 1:K))
activeclass<- which(numclust!=0)
for (j in 1:length(activeclass)) {
reg.blas <- 0
sum <- c(0)
coeff <- 0
## A Temporary matrix that needs to store the standardized regressors
clust <- which(c==activeclass[j])
Ytemp <- matrix(NA, nrow = length(clust), ncol = D)
if (length(clust)==1){
Ytemp <- matrix(0, nrow =1, ncol =D)
} else {
Ytemp <- scale(Y[clust,1:D], center = TRUE, scale = TRUE)
}
### Part where I use the MONOMVN PACKAGE
## If the Cluster has just one member I draw the parameters from the prior
if (length(clust) > 1){
Ttemp <- as.vector(That[clust])
ntemp <- length(clust)
##reg.blas <- blasso(Ytemp, Ttemp, T =1000,thin = 10, RJ = TRUE, beta = as.vector(betahat[activeclass[j],]),lambda2 = lambda2[activeclass[j]],s2 = sigma2[activeclass[j]], mprior = 0.20 ,rd =c(r,si), ab = c(1,1),normalize = TRUE, verb = 0)
reg.blas <- blasso(Ytemp, Ttemp, mprior = 0.20 ,rd =c(r,si), ab = c(1,1),normalize = TRUE, verb = 0 )
sum <- summary(reg.blas, burnin= 100)
## Selecting those features which are relevant
coeff <- unlist(lapply(strsplit(sum$coef[3,], split = ":"), function(x) as.numeric(unlist(x)[2])))
beta0[activeclass[j]] <- coeff[1]
indexplusone <- D+1
ind <- 2:indexplusone
betahat[activeclass[j], ] <- coeff[ind]
ta <- unlist(lapply(strsplit(sum$tau2i[3,], split = ":"), function(x) as.numeric(unlist(x)[2])))
tau2[activeclass[j],] <- ta
sigma2[activeclass[j]] <- sum$s2[3]
lambda2[activeclass[j]] <- sum$lambda2[3]
} else {
tempvector <- as.vector(That[clust])
tempmean <- mean(tempvector)
tmpscl <- scale(tempvector, center = TRUE, scale =FALSE)
tempmatrix <- Ytemp
tempnumber <- length(tempvector)
tempD <- matrix( 0, nrow = D, ncol =D)
if(any(is.na(tau2[activeclass[j],])) == TRUE)
{
tau2[activeclass[j],] <- priordraw(beta, W, epsilon, ro, r, si,N,D, sig2.dat)$tau2
}
betahat[activeclass[j],] <- as.vector(priordraw(beta, W, epsilon, ro, r, si,N,D, sig2.dat)$betahat)
for ( i in 1:D ) {
tempD[i,i] <- tau2[activeclass[j],i]
}
## For updating the sparsity prior
lambda2[activeclass[j]] <- rgamma(1, shape = r+D, rate = si + tr(tempD) )
#For updating tau2
for ( h in 1:D) {
tau2[activeclass[j], h] <- (rinv.gaussian(1,mu= sqrt(lambda2[activeclass[j]] * sigma2[activeclass[j]]/ (betahat[activeclass[j],h])^2), lambda = lambda2[activeclass[j]]))^-1
}
#For updating sigma2
## For updating the sigma2 parameter we need temporary matrices
tempprod <- NA
tempscalesigma1 <- as.vector(tmpscl - Ytemp %*% betahat[activeclass[j], ])
tempprod <- tempscalesigma1 %*% tempscalesigma1
tempscalesigma2 <- NA
tempscalesigma2 <- t(betahat[activeclass[j], ] %*% solve(tempD) %*% betahat[activeclass[j], ] )
sigma2[activeclass[j]] <- rinvgamma(1, shape = 1+ 0.5 * (tempnumber +D -1), scale = 1 + (0.5* (tempprod + tempscalesigma2 )) )
## This is because the error of the model may make it computationally infeasible
## For updating Betahat we need some matrices
tempD <- matrix( 0, nrow = D, ncol =D)
for ( i in 1:D ) {
tempD[i,i] <- tau2[activeclass[j],i]
}
tempA <- matrix(NA, nrow = D, ncol = D)
tempA <- t(Ytemp) %*% Ytemp + solve(tempD)
betahat[activeclass[j],] <- mvrnorm(1, mu = solve(tempA) %*% t(tempmatrix) %*% tmpscl, Sigma= sigma2[activeclass[j]] * solve(tempA))
beta0[activeclass[j]] <- rnorm(1, mean = tempmean, sd= sqrt(sigma2[activeclass[j]]/tempnumber))
}
}
list('beta0' = beta0,'sigma2' = sigma2, 'betahat' = betahat, 'lambda2' = lambda2, 'tau2' = tau2 )
}