-
Notifications
You must be signed in to change notification settings - Fork 4
/
__init__.py
135 lines (112 loc) · 4.13 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
def generate_noise(cond, generator=None, noise_type="normal"):
t = torch.empty_like(cond)
if noise_type == "uniform":
return t.uniform_()
elif noise_type == "exponential":
return t.exponential_()
else:
return t.normal_()
# From samplers.py
COND = 0
UNCOND = 1
class CADS:
current_step = 0
last_sigma = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"noise_scale": ("FLOAT", {"min": -5.0, "max": 5.0, "step": 0.01, "default": 0.25}),
"t1": ("FLOAT", {"min": 0.0, "max": 1.0, "step": 0.01, "default": 0.6}),
"t2": ("FLOAT", {"min": 0.0, "max": 1.0, "step": 0.01, "default": 0.9}),
},
"optional": {
"rescale": ("FLOAT", {"min": 0.0, "max": 1.0, "step": 0.01, "default": 0.0}),
"start_step": ("INT", {"min": -1, "max": 10000, "default": -1}),
"total_steps": ("INT", {"min": -1, "max": 10000, "default": -1}),
"apply_to": (["uncond", "cond", "both"],),
"key": (["y", "c_crossattn"],),
"noise_type": (["normal", "uniform", "exponential"],),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "do"
CATEGORY = "utils"
def do(
self,
model,
noise_scale,
t1,
t2,
rescale=0.0,
start_step=-1,
total_steps=-1,
apply_to="both",
key="y",
noise_type="normal",
):
previous_wrapper = model.model_options.get("model_function_wrapper")
im = model.model.model_sampling
self.current_step = start_step
self.last_sigma = None
skip = None
if apply_to == "cond":
skip = UNCOND
elif apply_to == "uncond":
skip = COND
def cads_gamma(sigma):
if start_step >= total_steps:
ts = im.timestep(sigma[0])
t = round(ts.item() / 999.0, 2)
else:
sigma_max = sigma.max().item()
if self.last_sigma is not None and sigma_max > self.last_sigma:
self.current_step = start_step
t = 1.0 - min(1.0, max(self.current_step / total_steps, 0.0))
self.current_step += 1
self.last_sigma = sigma_max
if t <= t1:
r = 1.0
elif t >= t2:
r = 0.0
else:
r = (t2 - t) / (t2 - t1)
return r
def cads_noise(gamma, y):
if y is None:
return None
noise = generate_noise(y, noise_type=noise_type)
gamma = torch.tensor(gamma).to(y)
psi = rescale
if psi != 0:
y_mean, y_std = y.mean(), y.std()
y = gamma.sqrt().item() * y + noise_scale * (1 - gamma).sqrt().item() * noise
# FIXME: does this work at all like it's supposed to?
if psi != 0:
y_scaled = (y - y.mean()) / y.std() * y_std + y_mean
if not y_scaled.isnan().any():
y = psi * y_scaled + (1 - psi) * y
else:
print("Warning, NaNs during rescale")
return y
def apply_cads(apply_model, args):
input_x = args["input"]
timestep = args["timestep"]
cond_or_uncond = args["cond_or_uncond"]
c = args["c"]
if noise_scale != 0.0:
noise_target = c.get(key, c["c_crossattn"])
gamma = cads_gamma(timestep)
for i in range(noise_target.size(dim=0)):
if cond_or_uncond[i % len(cond_or_uncond)] == skip:
continue
noise_target[i] = cads_noise(gamma, noise_target[i])
if previous_wrapper:
return previous_wrapper(apply_model, args)
return apply_model(input_x, timestep, **c)
m = model.clone()
m.set_model_unet_function_wrapper(apply_cads)
return (m,)
NODE_CLASS_MAPPINGS = {"CADS": CADS}