Skip to content

Latest commit

 

History

History
82 lines (53 loc) · 2.67 KB

efficientnet-b5-pytorch.md

File metadata and controls

82 lines (53 loc) · 2.67 KB

efficientnet-b5-pytorch

Use Case and High-Level Description

The efficientnet-b5-pytorch model is one of the EfficientNet models designed to perform image classification. This model was pretrained in TensorFlow*, then weights were converted to PyTorch*. All the EfficientNet models have been pretrained on the ImageNet* image database. For details about this family of models, check out the EfficientNets for PyTorch repository.

The model input is a blob that consists of a single image with the [3x456x456] shape in the RGB order. Before passing the image blob to the network, do the following:

  1. Subtract the RGB mean values as follows: [123.675,116.28,103.53]
  2. Divide the RGB mean values by [58.395,57.12,57.375]

The model output for efficientnet-b5-pytorch is the typical object classifier output for the 1000 different classifications matching those in the ImageNet database.

Example

Specification

Metric Value
Type Classification
GFLOPs 21.252
MParams 30.303
Source framework PyTorch*

Accuracy

Metric Original model Converted model
Top 1 83.69% 83.69%
Top 5 96.71% 96.71%

Performance

Input

Original Model

Image, name - data, shape - 1,3,456,456, format is B,C,H,W where:

  • B - batch size
  • C - channel
  • H - height
  • W - width

Channel order is RGB. Mean values - [123.675,116.28,103.53], scale values - [58.395,57.12,57.375].

Converted Model

Image, name - data, shape - 1,3,456,456, format is B,C,H,W where:

  • B - batch size
  • C - channel
  • H - height
  • W - width

Channel order is BGR.

Output

Original Model

Object classifier according to ImageNet classes, name - prob, shape - 1,1000, output data format is B,C where:

  • B - batch size
  • C - predicted probabilities for each class in the [0, 1] range

Converted Model

Object classifier according to ImageNet classes, name - prob, shape - 1,1000, output data format is B,C where:

  • B - batch size
  • C - predicted probabilities for each class in the [0, 1] range

Legal Information

The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in APACHE-2.0-PyTorch-EfficientNet.txt.