-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvsm.py
90 lines (77 loc) · 2.69 KB
/
vsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/env/python
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.pylab import plt
from matplotlib import cm
import numpy as np
import csv
import sys
class VectorSpaceModel(object):
def __init__(self, f1, f2):
self.f1 = f1
self.f2 = f2
self.doc_A = {}
self.doc_B = {}
self.doc_vec_A = []
self.doc_vec_B = []
def readCsvFiles(self):
self.f1.next()
self.f2.next()
for row in self.f1:
self.doc_A[row[0]] = float(row[1])
for row in self.f2:
self.doc_B[row[0]] = float(row[1])
for word, pi_score_A in self.doc_A.iteritems():
try:
pi_score_B = self.doc_B[word]
self.doc_vec_A.append(float(pi_score_A))
self.doc_vec_B.append(float(pi_score_B))
except KeyError:
self.doc_vec_A.append(float(pi_score_A))
self.doc_vec_B.append(0.0)
def cosSimilarity(self):
num = np.dot(self.doc_vec_A, self.doc_vec_B)
denum = (np.sqrt(np.dot(self.doc_vec_A, self.doc_vec_A)) * np.sqrt(np.dot(self.doc_vec_B, self.doc_vec_B)))
cos_sim = num / denum
print cos_sim
def drawSurfacePlot(self, f1):
"""
Method to draw a surface plot for test spec
using Word Rank | Tf-Idf Score | PI
"""
test_doc = {}
f1.next()
for row in f1:
test_doc[row[0]] = [row[1], row[2]]
sorted_test_doc = sorted(test_doc.items(), key=lambda e: e[1][0], reverse=True)
word_rank = []
PI_list = []
tf_idf_list = []
for i, word in enumerate(sorted_test_doc):
word_rank.append(i + 1)
PI_list.append(word[1][0])
tf_idf_list.append(word[1][1])
PI_list = [float(pi) for pi in PI_list]
tf_idf_list = [float(tf_idf) for tf_idf in tf_idf_list]
fig = plt.figure()
ax = Axes3D(fig)
X = word_rank
X_clone = word_rank
Y = tf_idf_list
X, Y = np.meshgrid(X, Y)
print X
# Z should be a function of X and Y
Z = PI_list
X_clone, Z = np.meshgrid(X_clone, Z)
ax.plot_surface(X, Y, Z, rstride=10, cstride=10, cmap=plt.cm.RdBu, alpha=None)
#ax.contour(X, Y, Z, zdir='x', offset=-4, cmap=cm.hsv)
#ax.contour(Y, Y, Z, zdir='y', offset=4, cmap=cm.hsv)
#ax.contour(Y, Y, Z, zdir='z', offset=-2, cmap=cm.hsv)
#ax.set_zlim(0, 1)
plt.show()
if __name__ == '__main__':
f1 = csv.reader(open(sys.argv[1], 'rb'))
f2 = csv.reader(open(sys.argv[2], 'rb'))
v = VectorSpaceModel(f1, f2)
v.readCsvFiles()
v.cosSimilarity()
#v.drawSurfacePlot(f1)