From ba9dc04ffade8d8b3a92ca3f0b57d4ae99754db3 Mon Sep 17 00:00:00 2001 From: Christophe Bornet Date: Sat, 4 May 2024 14:22:56 +0200 Subject: [PATCH] docs: Add doc for hybrid search (#21245) See [preview](https://langchain-git-fork-cbornet-doc-hybrid-search-langchain.vercel.app/docs/use_cases/question_answering/hybrid/) In the model of [per user retrieval](https://python.langchain.com/docs/use_cases/question_answering/per_user/) --- .../use_cases/question_answering/hybrid.ipynb | 392 ++++++++++++++++++ .../use_cases/question_answering/index.ipynb | 1 + docs/sidebars.js | 1 + 3 files changed, 394 insertions(+) create mode 100644 docs/docs/use_cases/question_answering/hybrid.ipynb diff --git a/docs/docs/use_cases/question_answering/hybrid.ipynb b/docs/docs/use_cases/question_answering/hybrid.ipynb new file mode 100644 index 0000000000000..fd4b5bf8419d4 --- /dev/null +++ b/docs/docs/use_cases/question_answering/hybrid.ipynb @@ -0,0 +1,392 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "14d3fd06", + "metadata": { + "id": "14d3fd06" + }, + "source": [ + "# Hybrid Search\n", + "\n", + "The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, ...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n", + "\n", + "**Step 1: Make sure the vectorstore you are using supports hybrid search**\n", + "\n", + "At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`. By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n", + "\n", + "**Step 2: Add that parameter as a configurable field for the chain**\n", + "\n", + "This will let you easily call the chain and configure any relevant flags at runtime. See [this documentation](/docs/expression_language/primitives/configure) for more information on configuration.\n", + "\n", + "**Step 3: Call the chain with that configurable field**\n", + "\n", + "Now, at runtime you can call this chain with configurable field.\n", + "\n", + "## Code Example\n", + "\n", + "Let's see a concrete example of what this looks like in code. We will use the Cassandra/CQL interface of Astra DB for this example.\n", + "\n", + "Install the following Python package:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c2efe35eea197769", + "metadata": { + "id": "c2efe35eea197769", + "outputId": "527275b4-076e-4b22-945c-e41a59188116" + }, + "outputs": [], + "source": [ + "!pip install \"cassio>=0.1.7\"" + ] + }, + { + "cell_type": "markdown", + "id": "b4ef96d44341cd84", + "metadata": { + "collapsed": false, + "id": "b4ef96d44341cd84" + }, + "source": [ + "Get the [connection secrets](https://docs.datastax.com/en/astra/astra-db-vector/get-started/quickstart.html).\n", + "\n", + "Initialize cassio:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cb2cef097277c32e", + "metadata": { + "id": "cb2cef097277c32e", + "outputId": "4c3d05a0-319a-44a0-8ec3-0a9c78453132" + }, + "outputs": [], + "source": [ + "import cassio\n", + "\n", + "cassio.init(\n", + " database_id=\"Your database ID\",\n", + " token=\"Your application token\",\n", + " keyspace=\"Your key space\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "e1e51444877f45eb", + "metadata": { + "collapsed": false, + "id": "e1e51444877f45eb" + }, + "source": [ + "Create the Cassandra VectorStore with a standard [index analyzer](https://docs.datastax.com/en/astra/astra-db-vector/cql/use-analyzers-with-cql.html). The index analyzer is needed to enable term matching." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7345de3c", + "metadata": { + "id": "7345de3c", + "outputId": "d38bcee0-0134-4ac6-8d35-afcce282481b" + }, + "outputs": [], + "source": [ + "from cassio.table.cql import STANDARD_ANALYZER\n", + "from langchain_community.vectorstores import Cassandra\n", + "from langchain_openai import OpenAIEmbeddings\n", + "\n", + "embeddings = OpenAIEmbeddings()\n", + "vectorstore = Cassandra(\n", + " embedding=embeddings,\n", + " table_name=\"test_hybrid\",\n", + " body_index_options=[STANDARD_ANALYZER],\n", + " session=None,\n", + " keyspace=None,\n", + ")\n", + "\n", + "vectorstore.add_texts(\n", + " [\n", + " \"In 2023, I visited Paris\",\n", + " \"In 2022, I visited New York\",\n", + " \"In 2021, I visited New Orleans\",\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "73887f23bbab978c", + "metadata": { + "collapsed": false, + "id": "73887f23bbab978c" + }, + "source": [ + "If we do a standard similarity search, we get all the documents:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c2a39fa", + "metadata": { + "id": "3c2a39fa", + "outputId": "5290085b-896c-4c81-9b40-c315331b7009" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[Document(page_content='In 2022, I visited New York'),\n", + "Document(page_content='In 2023, I visited Paris'),\n", + "Document(page_content='In 2021, I visited New Orleans')]" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vectorstore.as_retriever().invoke(\"What city did I visit last?\")" + ] + }, + { + "cell_type": "markdown", + "id": "78d4c3c79e67d8c3", + "metadata": { + "collapsed": false, + "id": "78d4c3c79e67d8c3" + }, + "source": [ + "The Astra DB vectorstore `body_search` argument can be used to filter the search on the term `new`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "56393baa", + "metadata": { + "id": "56393baa", + "outputId": "d1c939f3-342f-4df4-94a3-d25429b5a25e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[Document(page_content='In 2022, I visited New York'),\n", + "Document(page_content='In 2021, I visited New Orleans')]" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vectorstore.as_retriever(search_kwargs={\"body_search\": \"new\"}).invoke(\n", + " \"What city did I visit last?\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "88ae97ed", + "metadata": { + "id": "88ae97ed" + }, + "source": [ + "We can now create the chain that we will use to do question-answering over" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62707b4f", + "metadata": { + "id": "62707b4f" + }, + "outputs": [], + "source": [ + "from langchain_core.output_parsers import StrOutputParser\n", + "from langchain_core.prompts import ChatPromptTemplate\n", + "from langchain_core.runnables import (\n", + " ConfigurableField,\n", + " RunnablePassthrough,\n", + ")\n", + "from langchain_openai import ChatOpenAI" + ] + }, + { + "cell_type": "markdown", + "id": "b6778ffa", + "metadata": { + "id": "b6778ffa" + }, + "source": [ + "This is basic question-answering chain set up." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "44a865f6", + "metadata": { + "id": "44a865f6" + }, + "outputs": [], + "source": [ + "template = \"\"\"Answer the question based only on the following context:\n", + "{context}\n", + "Question: {question}\n", + "\"\"\"\n", + "prompt = ChatPromptTemplate.from_template(template)\n", + "\n", + "model = ChatOpenAI()\n", + "\n", + "retriever = vectorstore.as_retriever()" + ] + }, + { + "cell_type": "markdown", + "id": "72125166", + "metadata": { + "id": "72125166" + }, + "source": [ + "Here we mark the retriever as having a configurable field. All vectorstore retrievers have `search_kwargs` as a field. This is just a dictionary, with vectorstore specific fields" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "babbadff", + "metadata": { + "id": "babbadff" + }, + "outputs": [], + "source": [ + "configurable_retriever = retriever.configurable_fields(\n", + " search_kwargs=ConfigurableField(\n", + " id=\"search_kwargs\",\n", + " name=\"Search Kwargs\",\n", + " description=\"The search kwargs to use\",\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2d481b70", + "metadata": { + "id": "2d481b70" + }, + "source": [ + "We can now create the chain using our configurable retriever" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "210b0446", + "metadata": { + "id": "210b0446" + }, + "outputs": [], + "source": [ + "chain = (\n", + " {\"context\": configurable_retriever, \"question\": RunnablePassthrough()}\n", + " | prompt\n", + " | model\n", + " | StrOutputParser()\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a38037b2", + "metadata": { + "id": "a38037b2", + "outputId": "1ea14996-5965-4a5e-9678-b9c35ce5c6de" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Paris" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain.invoke(\"What city did I visit last?\")" + ] + }, + { + "cell_type": "markdown", + "id": "7f6458c3", + "metadata": { + "id": "7f6458c3" + }, + "source": [ + "We can now invoke the chain with configurable options. `search_kwargs` is the id of the configurable field. The value is the search kwargs to use for Astra DB." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9gYLqBTH8BFz", + "metadata": { + "id": "9gYLqBTH8BFz", + "outputId": "4358a2e6-f306-48f1-dd5c-781ac8a33e89" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "New York" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain.invoke(\n", + " \"What city did I visit last?\",\n", + " config={\"configurable\": {\"search_kwargs\": {\"body_search\": \"new\"}}},\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/question_answering/index.ipynb b/docs/docs/use_cases/question_answering/index.ipynb index e1ac8f8d65e2f..0bcca9487a9e6 100644 --- a/docs/docs/use_cases/question_answering/index.ipynb +++ b/docs/docs/use_cases/question_answering/index.ipynb @@ -80,6 +80,7 @@ "- [Returning sources](/docs/use_cases/question_answering/sources): How to return the source documents used in a particular generation.\n", "- [Streaming](/docs/use_cases/question_answering/streaming): How to stream final answers as well as intermediate steps.\n", "- [Adding chat history](/docs/use_cases/question_answering/chat_history): How to add chat history to a Q&A app.\n", + "- [Hybrid search](/docs/use_cases/question_answering/hybrid): How to do hybrid search.\n", "- [Per-user retrieval](/docs/use_cases/question_answering/per_user): How to do retrieval when each user has their own private data.\n", "- [Using agents](/docs/use_cases/question_answering/conversational_retrieval_agents): How to use agents for Q&A.\n", "- [Using local models](/docs/use_cases/question_answering/local_retrieval_qa): How to use local models for Q&A." diff --git a/docs/sidebars.js b/docs/sidebars.js index e627cd7b6cf68..5b387eeb6ddcf 100644 --- a/docs/sidebars.js +++ b/docs/sidebars.js @@ -53,6 +53,7 @@ label: "More", collapsed: true, items: [ + "use_cases/question_answering/hybrid", "use_cases/question_answering/per_user", "use_cases/question_answering/conversational_retrieval_agents", "use_cases/question_answering/local_retrieval_qa",