-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathttf_fpn.py
242 lines (218 loc) · 8.76 KB
/
ttf_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Uniform, Normal, XavierUniform
from ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from ppdet.modeling.layers import DeformableConvV2, ConvNormLayer, LiteConv
import math
from ppdet.modeling.ops import batch_norm
from ..shape_spec import ShapeSpec
__all__ = ['TTFFPN']
class Upsample(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(Upsample, self).__init__()
fan_in = ch_in * 3 * 3
stdv = 1. / math.sqrt(fan_in)
self.dcn = DeformableConvV2(
ch_in,
ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(
initializer=Constant(0),
regularizer=L2Decay(0.),
learning_rate=2.),
lr_scale=2.,
regularizer=L2Decay(0.))
self.bn = batch_norm(
ch_out, norm_type=norm_type, initializer=Constant(1.))
def forward(self, feat):
dcn = self.dcn(feat)
bn = self.bn(dcn)
relu = F.relu(bn)
out = F.interpolate(relu, scale_factor=2., mode='bilinear')
return out
class DeConv(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(DeConv, self).__init__()
self.deconv = nn.Sequential()
conv1 = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
stride=1,
filter_size=1,
norm_type=norm_type,
initializer=XavierUniform())
conv2 = nn.Conv2DTranspose(
in_channels=ch_out,
out_channels=ch_out,
kernel_size=4,
padding=1,
stride=2,
groups=ch_out,
weight_attr=ParamAttr(initializer=XavierUniform()),
bias_attr=False)
bn = batch_norm(ch_out, norm_type=norm_type, norm_decay=0.)
conv3 = ConvNormLayer(
ch_in=ch_out,
ch_out=ch_out,
stride=1,
filter_size=1,
norm_type=norm_type,
initializer=XavierUniform())
self.deconv.add_sublayer('conv1', conv1)
self.deconv.add_sublayer('relu6_1', nn.ReLU6())
self.deconv.add_sublayer('conv2', conv2)
self.deconv.add_sublayer('bn', bn)
self.deconv.add_sublayer('relu6_2', nn.ReLU6())
self.deconv.add_sublayer('conv3', conv3)
self.deconv.add_sublayer('relu6_3', nn.ReLU6())
def forward(self, inputs):
return self.deconv(inputs)
class LiteUpsample(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(LiteUpsample, self).__init__()
self.deconv = DeConv(ch_in, ch_out, norm_type=norm_type)
self.conv = LiteConv(ch_in, ch_out, norm_type=norm_type)
def forward(self, inputs):
deconv_up = self.deconv(inputs)
conv = self.conv(inputs)
interp_up = F.interpolate(conv, scale_factor=2., mode='bilinear')
return deconv_up + interp_up
class ShortCut(nn.Layer):
def __init__(self,
layer_num,
ch_in,
ch_out,
norm_type='bn',
lite_neck=False,
name=None):
super(ShortCut, self).__init__()
shortcut_conv = nn.Sequential()
for i in range(layer_num):
fan_out = 3 * 3 * ch_out
std = math.sqrt(2. / fan_out)
in_channels = ch_in if i == 0 else ch_out
shortcut_name = name + '.conv.{}'.format(i)
if lite_neck:
shortcut_conv.add_sublayer(
shortcut_name,
LiteConv(
in_channels=in_channels,
out_channels=ch_out,
with_act=i < layer_num - 1,
norm_type=norm_type))
else:
shortcut_conv.add_sublayer(
shortcut_name,
nn.Conv2D(
in_channels=in_channels,
out_channels=ch_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0, std)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.))))
if i < layer_num - 1:
shortcut_conv.add_sublayer(shortcut_name + '.act',
nn.ReLU())
self.shortcut = self.add_sublayer('shortcut', shortcut_conv)
def forward(self, feat):
out = self.shortcut(feat)
return out
@register
@serializable
class TTFFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[128,256,512,1024] by default, means the channels of DarkNet53
backbone return_idx [1,2,3,4].
planes (list): the number of output feature channels of FPN.
[256, 128, 64] by default
shortcut_num (list): the number of convolution layers in each shortcut.
[3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs
in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
lite_neck (bool): whether to use lite conv in TTFNet FPN,
False by default
fusion_method (string): the method to fusion upsample and lateral layer.
'add' and 'concat' are optional, add by default
"""
__shared__ = ['norm_type']
def __init__(self,
in_channels,
planes=[256, 128, 64],
shortcut_num=[3, 2, 1],
norm_type='bn',
lite_neck=False,
fusion_method='add'):
super(TTFFPN, self).__init__()
self.planes = planes
self.shortcut_num = shortcut_num[::-1]
self.shortcut_len = len(shortcut_num)
self.ch_in = in_channels[::-1]
self.fusion_method = fusion_method
self.upsample_list = []
self.shortcut_list = []
self.upper_list = []
for i, out_c in enumerate(self.planes):
in_c = self.ch_in[i] if i == 0 else self.upper_list[-1]
upsample_module = LiteUpsample if lite_neck else Upsample
upsample = self.add_sublayer(
'upsample.' + str(i),
upsample_module(
in_c, out_c, norm_type=norm_type))
self.upsample_list.append(upsample)
if i < self.shortcut_len:
shortcut = self.add_sublayer(
'shortcut.' + str(i),
ShortCut(
self.shortcut_num[i],
self.ch_in[i + 1],
out_c,
norm_type=norm_type,
lite_neck=lite_neck,
name='shortcut.' + str(i)))
self.shortcut_list.append(shortcut)
if self.fusion_method == 'add':
upper_c = out_c
elif self.fusion_method == 'concat':
upper_c = out_c * 2
else:
raise ValueError('Illegal fusion method. Expected add or\
concat, but received {}'.format(self.fusion_method))
self.upper_list.append(upper_c)
def forward(self, inputs):
feat = inputs[-1]
for i, out_c in enumerate(self.planes):
feat = self.upsample_list[i](feat)
if i < self.shortcut_len:
shortcut = self.shortcut_list[i](inputs[-i - 2])
if self.fusion_method == 'add':
feat = feat + shortcut
else:
feat = paddle.concat([feat, shortcut], axis=1)
return feat
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=self.upper_list[-1], )]