-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvnext.py
245 lines (212 loc) · 8.42 KB
/
convnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Modified from https://github.com/facebookresearch/ConvNeXt
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
'''
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant
import numpy as np
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
from .transformer_utils import DropPath, trunc_normal_, zeros_
__all__ = ['ConvNeXt']
class Block(nn.Layer):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in Pypaddle
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2D(
dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
if layer_scale_init_value > 0:
self.gamma = self.create_parameter(
shape=(dim, ),
attr=ParamAttr(initializer=Constant(layer_scale_init_value)))
else:
self.gamma = None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity(
)
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.transpose([0, 2, 3, 1])
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.transpose([0, 3, 1, 2])
x = input + self.drop_path(x)
return x
class LayerNorm(nn.Layer):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = self.create_parameter(
shape=(normalized_shape, ),
attr=ParamAttr(initializer=Constant(1.)))
self.bias = self.create_parameter(
shape=(normalized_shape, ),
attr=ParamAttr(initializer=Constant(0.)))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight,
self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / paddle.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
@register
@serializable
class ConvNeXt(nn.Layer):
r""" ConvNeXt
A Pypaddle impl of : `A ConvNet for the 2020s` -
https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
arch_settings = {
'tiny': {
'depths': [3, 3, 9, 3],
'dims': [96, 192, 384, 768]
},
'small': {
'depths': [3, 3, 27, 3],
'dims': [96, 192, 384, 768]
},
'base': {
'depths': [3, 3, 27, 3],
'dims': [128, 256, 512, 1024]
},
'large': {
'depths': [3, 3, 27, 3],
'dims': [192, 384, 768, 1536]
},
'xlarge': {
'depths': [3, 3, 27, 3],
'dims': [256, 512, 1024, 2048]
},
}
def __init__(
self,
arch='tiny',
in_chans=3,
drop_path_rate=0.,
layer_scale_init_value=1e-6,
return_idx=[1, 2, 3],
norm_output=True,
pretrained=None, ):
super().__init__()
depths = self.arch_settings[arch]['depths']
dims = self.arch_settings[arch]['dims']
self.downsample_layers = nn.LayerList(
) # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2D(
in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(
dims[0], eps=1e-6, data_format="channels_first"))
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(
dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2D(
dims[i], dims[i + 1], kernel_size=2, stride=2), )
self.downsample_layers.append(downsample_layer)
self.stages = nn.LayerList(
) # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates = [x for x in np.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(* [
Block(
dim=dims[i],
drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value)
for j in range(depths[i])
])
self.stages.append(stage)
cur += depths[i]
self.return_idx = return_idx
self.dims = [dims[i] for i in return_idx] # [::-1]
self.norm_output = norm_output
if norm_output:
self.norms = nn.LayerList([
LayerNorm(
c, eps=1e-6, data_format="channels_first")
for c in self.dims
])
self.apply(self._init_weights)
if pretrained is not None:
if 'http' in pretrained: #URL
path = paddle.utils.download.get_weights_path_from_url(
pretrained)
else: #model in local path
path = pretrained
self.set_state_dict(paddle.load(path))
def _init_weights(self, m):
if isinstance(m, (nn.Conv2D, nn.Linear)):
trunc_normal_(m.weight)
zeros_(m.bias)
def forward_features(self, x):
output = []
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
output.append(x)
outputs = [output[i] for i in self.return_idx]
if self.norm_output:
outputs = [self.norms[i](out) for i, out in enumerate(outputs)]
return outputs
def forward(self, x):
x = self.forward_features(x['image'])
return x
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self.dims]