-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
1228 lines (1120 loc) · 48 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import glob
import json
from pathlib import Path
from functools import reduce
import cv2
import numpy as np
import math
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
import sys
# add deploy path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)
from benchmark_utils import PaddleInferBenchmark
from picodet_postprocess import PicoDetPostProcess
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image, CULaneResize
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
from clrnet_postprocess import CLRNetPostProcess
from visualize import visualize_box_mask, imshow_lanes
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
# Global dictionary
SUPPORT_MODELS = {
'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'YOLOF', 'PPHGNet',
'PPLCNet', 'DETR', 'CenterTrack', 'CLRNet'
}
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
mems = {
'cpu_rss_mb': detector.cpu_mem / len(img_list),
'gpu_rss_mb': detector.gpu_mem / len(img_list),
'gpu_util': detector.gpu_util * 100 / len(img_list)
}
perf_info = detector.det_times.report(average=True)
data_info = {
'batch_size': batch_size,
'shape': "dynamic_shape",
'data_num': perf_info['img_num']
}
log = PaddleInferBenchmark(detector.config, model_info, data_info,
perf_info, mems)
log(name)
class Detector(object):
"""
Args:
pred_config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
output_dir (str): The path of output
threshold (float): The threshold of score for visualization
delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT.
Used by action model.
"""
def __init__(self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
enable_mkldnn_bfloat16=False,
output_dir='output',
threshold=0.5,
delete_shuffle_pass=False,
use_fd_format=False):
self.pred_config = self.set_config(model_dir, use_fd_format=use_fd_format)
self.predictor, self.config = load_predictor(
model_dir,
self.pred_config.arch,
run_mode=run_mode,
batch_size=batch_size,
min_subgraph_size=self.pred_config.min_subgraph_size,
device=device,
use_dynamic_shape=self.pred_config.use_dynamic_shape,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
delete_shuffle_pass=delete_shuffle_pass)
self.det_times = Timer()
self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
self.batch_size = batch_size
self.output_dir = output_dir
self.threshold = threshold
def set_config(self, model_dir, use_fd_format):
return PredictConfig(model_dir, use_fd_format=use_fd_format)
def preprocess(self, image_list):
preprocess_ops = []
for op_info in self.pred_config.preprocess_infos:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
input_im_lst = []
input_im_info_lst = []
for im_path in image_list:
im, im_info = preprocess(im_path, preprocess_ops)
input_im_lst.append(im)
input_im_info_lst.append(im_info)
inputs = create_inputs(input_im_lst, input_im_info_lst)
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
if input_names[i] == 'x':
input_tensor.copy_from_cpu(inputs['image'])
else:
input_tensor.copy_from_cpu(inputs[input_names[i]])
return inputs
def postprocess(self, inputs, result):
# postprocess output of predictor
np_boxes_num = result['boxes_num']
assert isinstance(np_boxes_num, np.ndarray), \
'`np_boxes_num` should be a `numpy.ndarray`'
result = {k: v for k, v in result.items() if v is not None}
return result
def filter_box(self, result, threshold):
np_boxes_num = result['boxes_num']
boxes = result['boxes']
start_idx = 0
filter_boxes = []
filter_num = []
for i in range(len(np_boxes_num)):
boxes_num = np_boxes_num[i]
boxes_i = boxes[start_idx:start_idx + boxes_num, :]
idx = boxes_i[:, 1] > threshold
filter_boxes_i = boxes_i[idx, :]
filter_boxes.append(filter_boxes_i)
filter_num.append(filter_boxes_i.shape[0])
start_idx += boxes_num
boxes = np.concatenate(filter_boxes)
filter_num = np.array(filter_num)
filter_res = {'boxes': boxes, 'boxes_num': filter_num}
return filter_res
def predict(self, repeats=1, run_benchmark=False):
'''
Args:
repeats (int): repeats number for prediction
Returns:
result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's result include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
# model prediction
np_boxes_num, np_boxes, np_masks = np.array([0]), None, None
if run_benchmark:
for i in range(repeats):
self.predictor.run()
paddle.device.cuda.synchronize()
result = dict(
boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
return result
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
np_boxes = boxes_tensor.copy_to_cpu()
if len(output_names) == 1:
# some exported model can not get tensor 'bbox_num'
np_boxes_num = np.array([len(np_boxes)])
else:
boxes_num = self.predictor.get_output_handle(output_names[1])
np_boxes_num = boxes_num.copy_to_cpu()
if self.pred_config.mask:
masks_tensor = self.predictor.get_output_handle(output_names[2])
np_masks = masks_tensor.copy_to_cpu()
result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
return result
def merge_batch_result(self, batch_result):
if len(batch_result) == 1:
return batch_result[0]
res_key = batch_result[0].keys()
results = {k: [] for k in res_key}
for res in batch_result:
for k, v in res.items():
results[k].append(v)
for k, v in results.items():
if k not in ['masks', 'segm']:
results[k] = np.concatenate(v)
return results
def get_timer(self):
return self.det_times
def predict_image_slice(self,
img_list,
slice_size=[640, 640],
overlap_ratio=[0.25, 0.25],
combine_method='nms',
match_threshold=0.6,
match_metric='ios',
run_benchmark=False,
repeats=1,
visual=True,
save_results=False):
# slice infer only support bs=1
results = []
try:
import sahi
from sahi.slicing import slice_image
except Exception as e:
print(
'sahi not found, plaese install sahi. '
'for example: `pip install sahi`, see https://github.com/obss/sahi.'
)
raise e
num_classes = len(self.pred_config.labels)
for i in range(len(img_list)):
ori_image = img_list[i]
slice_image_result = sahi.slicing.slice_image(
image=ori_image,
slice_height=slice_size[0],
slice_width=slice_size[1],
overlap_height_ratio=overlap_ratio[0],
overlap_width_ratio=overlap_ratio[1])
sub_img_num = len(slice_image_result)
merged_bboxs = []
print('slice to {} sub_samples.', sub_img_num)
batch_image_list = [
slice_image_result.images[_ind] for _ind in range(sub_img_num)
]
if run_benchmark:
# preprocess
inputs = self.preprocess(batch_image_list) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
result = self.predict(repeats=50, run_benchmark=True) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats, run_benchmark=True)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += 1
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
# preprocess
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
self.det_times.inference_time_s.start()
result = self.predict()
self.det_times.inference_time_s.end()
# postprocess
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += 1
st, ed = 0, result['boxes_num'][0] # start_index, end_index
for _ind in range(sub_img_num):
boxes_num = result['boxes_num'][_ind]
ed = st + boxes_num
shift_amount = slice_image_result.starting_pixels[_ind]
result['boxes'][st:ed][:, 2:4] = result['boxes'][
st:ed][:, 2:4] + shift_amount
result['boxes'][st:ed][:, 4:6] = result['boxes'][
st:ed][:, 4:6] + shift_amount
merged_bboxs.append(result['boxes'][st:ed])
st = ed
merged_results = {'boxes': []}
if combine_method == 'nms':
final_boxes = multiclass_nms(
np.concatenate(merged_bboxs), num_classes, match_threshold,
match_metric)
merged_results['boxes'] = np.concatenate(final_boxes)
elif combine_method == 'concat':
merged_results['boxes'] = np.concatenate(merged_bboxs)
else:
raise ValueError(
"Now only support 'nms' or 'concat' to fuse detection results."
)
merged_results['boxes_num'] = np.array(
[len(merged_results['boxes'])], dtype=np.int32)
if visual:
visualize(
[ori_image], # should be list
merged_results,
self.pred_config.labels,
output_dir=self.output_dir,
threshold=self.threshold)
results.append(merged_results)
print('Test iter {}'.format(i))
results = self.merge_batch_result(results)
if save_results:
Path(self.output_dir).mkdir(exist_ok=True)
self.save_coco_results(
img_list, results, use_coco_category=FLAGS.use_coco_category)
return results
def predict_image(self,
image_list,
run_benchmark=False,
repeats=1,
visual=True,
save_results=False):
batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
results = []
for i in range(batch_loop_cnt):
start_index = i * self.batch_size
end_index = min((i + 1) * self.batch_size, len(image_list))
batch_image_list = image_list[start_index:end_index]
if run_benchmark:
# preprocess
inputs = self.preprocess(batch_image_list) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
result = self.predict(repeats=50, run_benchmark=True) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats, run_benchmark=True)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += len(batch_image_list)
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
# preprocess
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
self.det_times.inference_time_s.start()
result = self.predict()
self.det_times.inference_time_s.end()
# postprocess
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += len(batch_image_list)
if visual:
visualize(
batch_image_list,
result,
self.pred_config.labels,
output_dir=self.output_dir,
threshold=self.threshold)
results.append(result)
print('Test iter {}'.format(i))
results = self.merge_batch_result(results)
if save_results:
Path(self.output_dir).mkdir(exist_ok=True)
self.save_coco_results(
image_list, results, use_coco_category=FLAGS.use_coco_category)
return results
def predict_video(self, video_file, camera_id):
video_out_name = 'output.mp4'
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
else:
capture = cv2.VideoCapture(video_file)
video_out_name = os.path.split(video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
index = 1
while (1):
ret, frame = capture.read()
if not ret:
break
print('detect frame: %d' % (index))
index += 1
results = self.predict_image([frame[:, :, ::-1]], visual=False)
im = visualize_box_mask(
frame,
results,
self.pred_config.labels,
threshold=self.threshold)
im = np.array(im)
writer.write(im)
if camera_id != -1:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
writer.release()
def save_coco_results(self, image_list, results, use_coco_category=False):
bbox_results = []
mask_results = []
idx = 0
print("Start saving coco json files...")
for i, box_num in enumerate(results['boxes_num']):
file_name = os.path.split(image_list[i])[-1]
if use_coco_category:
img_id = int(os.path.splitext(file_name)[0])
else:
img_id = i
if 'boxes' in results:
boxes = results['boxes'][idx:idx + box_num].tolist()
bbox_results.extend([{
'image_id': img_id,
'category_id': coco_clsid2catid[int(box[0])] \
if use_coco_category else int(box[0]),
'file_name': file_name,
'bbox': [box[2], box[3], box[4] - box[2],
box[5] - box[3]], # xyxy -> xywh
'score': box[1]} for box in boxes])
if 'masks' in results:
import pycocotools.mask as mask_util
boxes = results['boxes'][idx:idx + box_num].tolist()
masks = results['masks'][i][:box_num].astype(np.uint8)
seg_res = []
for box, mask in zip(boxes, masks):
rle = mask_util.encode(
np.array(
mask[:, :, None], dtype=np.uint8, order="F"))[0]
if 'counts' in rle:
rle['counts'] = rle['counts'].decode("utf8")
seg_res.append({
'image_id': img_id,
'category_id': coco_clsid2catid[int(box[0])] \
if use_coco_category else int(box[0]),
'file_name': file_name,
'segmentation': rle,
'score': box[1]})
mask_results.extend(seg_res)
idx += box_num
if bbox_results:
bbox_file = os.path.join(self.output_dir, "bbox.json")
with open(bbox_file, 'w') as f:
json.dump(bbox_results, f)
print(f"The bbox result is saved to {bbox_file}")
if mask_results:
mask_file = os.path.join(self.output_dir, "mask.json")
with open(mask_file, 'w') as f:
json.dump(mask_results, f)
print(f"The mask result is saved to {mask_file}")
class DetectorSOLOv2(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
output_dir (str): The path of output
threshold (float): The threshold of score for visualization
"""
def __init__(
self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
enable_mkldnn_bfloat16=False,
output_dir='./',
threshold=0.5,
use_fd_format=False):
super(DetectorSOLOv2, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
output_dir=output_dir,
threshold=threshold,
use_fd_format=use_fd_format)
def predict(self, repeats=1, run_benchmark=False):
'''
Args:
repeats (int): repeat number for prediction
Returns:
result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
'cate_label': label of segm, shape:[N]
'cate_score': confidence score of segm, shape:[N]
'''
np_segms, np_label, np_score, np_boxes_num = None, None, None, np.array(
[0])
if run_benchmark:
for i in range(repeats):
self.predictor.run()
paddle.device.cuda.synchronize()
result = dict(
segm=np_segms,
label=np_label,
score=np_score,
boxes_num=np_boxes_num)
return result
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
np_boxes_num = self.predictor.get_output_handle(output_names[
0]).copy_to_cpu()
np_label = self.predictor.get_output_handle(output_names[
1]).copy_to_cpu()
np_score = self.predictor.get_output_handle(output_names[
2]).copy_to_cpu()
np_segms = self.predictor.get_output_handle(output_names[
3]).copy_to_cpu()
result = dict(
segm=np_segms,
label=np_label,
score=np_score,
boxes_num=np_boxes_num)
return result
class DetectorPicoDet(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to turn on MKLDNN
enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
"""
def __init__(
self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
enable_mkldnn_bfloat16=False,
output_dir='./',
threshold=0.5,
use_fd_format=False):
super(DetectorPicoDet, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
output_dir=output_dir,
threshold=threshold,
use_fd_format=use_fd_format)
def postprocess(self, inputs, result):
# postprocess output of predictor
np_score_list = result['boxes']
np_boxes_list = result['boxes_num']
postprocessor = PicoDetPostProcess(
inputs['image'].shape[2:],
inputs['im_shape'],
inputs['scale_factor'],
strides=self.pred_config.fpn_stride,
nms_threshold=self.pred_config.nms['nms_threshold'])
np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
return result
def predict(self, repeats=1, run_benchmark=False):
'''
Args:
repeats (int): repeat number for prediction
Returns:
result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
'''
np_score_list, np_boxes_list = [], []
if run_benchmark:
for i in range(repeats):
self.predictor.run()
paddle.device.cuda.synchronize()
result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
return result
for i in range(repeats):
self.predictor.run()
np_score_list.clear()
np_boxes_list.clear()
output_names = self.predictor.get_output_names()
num_outs = int(len(output_names) / 2)
for out_idx in range(num_outs):
np_score_list.append(
self.predictor.get_output_handle(output_names[out_idx])
.copy_to_cpu())
np_boxes_list.append(
self.predictor.get_output_handle(output_names[
out_idx + num_outs]).copy_to_cpu())
result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
return result
class DetectorCLRNet(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to turn on MKLDNN
enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
"""
def __init__(
self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
enable_mkldnn_bfloat16=False,
output_dir='./',
threshold=0.5,
use_fd_format=False):
super(DetectorCLRNet, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
output_dir=output_dir,
threshold=threshold,
use_fd_format=use_fd_format)
deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
self.img_w = yml_conf['img_w']
self.ori_img_h = yml_conf['ori_img_h']
self.cut_height = yml_conf['cut_height']
self.max_lanes = yml_conf['max_lanes']
self.nms_thres = yml_conf['nms_thres']
self.num_points = yml_conf['num_points']
self.conf_threshold = yml_conf['conf_threshold']
def postprocess(self, inputs, result):
# postprocess output of predictor
lanes_list = result['lanes']
postprocessor = CLRNetPostProcess(
img_w=self.img_w,
ori_img_h=self.ori_img_h,
cut_height=self.cut_height,
conf_threshold=self.conf_threshold,
nms_thres=self.nms_thres,
max_lanes=self.max_lanes,
num_points=self.num_points)
lanes = postprocessor(lanes_list)
result = dict(lanes=lanes)
return result
def predict(self, repeats=1, run_benchmark=False):
'''
Args:
repeats (int): repeat number for prediction
Returns:
result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
'''
lanes_list = []
if run_benchmark:
for i in range(repeats):
self.predictor.run()
paddle.device.cuda.synchronize()
result = dict(lanes=lanes_list)
return result
for i in range(repeats):
# TODO: check the output of predictor
self.predictor.run()
lanes_list.clear()
output_names = self.predictor.get_output_names()
num_outs = int(len(output_names) / 2)
if num_outs == 0:
lanes_list.append([])
for out_idx in range(num_outs):
lanes_list.append(
self.predictor.get_output_handle(output_names[out_idx])
.copy_to_cpu())
result = dict(lanes=lanes_list)
return result
def create_inputs(imgs, im_info):
"""generate input for different model type
Args:
imgs (list(numpy)): list of images (np.ndarray)
im_info (list(dict)): list of image info
Returns:
inputs (dict): input of model
"""
inputs = {}
im_shape = []
scale_factor = []
if len(imgs) == 1:
inputs['image'] = np.array((imgs[0], )).astype('float32')
inputs['im_shape'] = np.array(
(im_info[0]['im_shape'], )).astype('float32')
inputs['scale_factor'] = np.array(
(im_info[0]['scale_factor'], )).astype('float32')
return inputs
for e in im_info:
im_shape.append(np.array((e['im_shape'], )).astype('float32'))
scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
max_shape_h = max([e[0] for e in imgs_shape])
max_shape_w = max([e[1] for e in imgs_shape])
padding_imgs = []
for img in imgs:
im_c, im_h, im_w = img.shape[:]
padding_im = np.zeros(
(im_c, max_shape_h, max_shape_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = img
padding_imgs.append(padding_im)
inputs['image'] = np.stack(padding_imgs, axis=0)
return inputs
class PredictConfig():
"""set config of preprocess, postprocess and visualize
Args:
model_dir (str): root path of model.yml
"""
def __init__(self, model_dir, use_fd_format=False):
# parsing Yaml config for Preprocess
fd_deploy_file = os.path.join(model_dir, 'inference.yml')
ppdet_deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
if use_fd_format:
if not os.path.exists(fd_deploy_file) and os.path.exists(
ppdet_deploy_file):
raise RuntimeError(
"Non-FD format model detected. Please set `use_fd_format` to False."
)
deploy_file = fd_deploy_file
else:
if not os.path.exists(ppdet_deploy_file) and os.path.exists(
fd_deploy_file):
raise RuntimeError(
"FD format model detected. Please set `use_fd_format` to False."
)
deploy_file = ppdet_deploy_file
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
self.check_model(yml_conf)
self.arch = yml_conf['arch']
self.preprocess_infos = yml_conf['Preprocess']
self.min_subgraph_size = yml_conf['min_subgraph_size']
self.labels = yml_conf['label_list']
self.mask = False
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
if 'mask' in yml_conf:
self.mask = yml_conf['mask']
self.tracker = None
if 'tracker' in yml_conf:
self.tracker = yml_conf['tracker']
if 'NMS' in yml_conf:
self.nms = yml_conf['NMS']
if 'fpn_stride' in yml_conf:
self.fpn_stride = yml_conf['fpn_stride']
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
print(
'The RCNN export model is used for ONNX and it only supports batch_size = 1'
)
self.print_config()
def check_model(self, yml_conf):
"""
Raises:
ValueError: loaded model not in supported model type
"""
for support_model in SUPPORT_MODELS:
if support_model in yml_conf['arch']:
return True
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
'arch'], SUPPORT_MODELS))
def print_config(self):
print('----------- Model Configuration -----------')
print('%s: %s' % ('Model Arch', self.arch))
print('%s: ' % ('Transform Order'))
for op_info in self.preprocess_infos:
print('--%s: %s' % ('transform op', op_info['type']))
print('--------------------------------------------')
def load_predictor(model_dir,
arch,
run_mode='paddle',
batch_size=1,
device='CPU',
min_subgraph_size=3,
use_dynamic_shape=False,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
enable_mkldnn_bfloat16=False,
delete_shuffle_pass=False):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT.
Used by action model.
Returns:
predictor (PaddlePredictor): AnalysisPredictor
Raises:
ValueError: predict by TensorRT need device == 'GPU'.
"""
if device != 'GPU' and run_mode != 'paddle':
raise ValueError(
"Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
.format(run_mode, device))
infer_model = os.path.join(model_dir, 'model.pdmodel')
infer_params = os.path.join(model_dir, 'model.pdiparams')
if not os.path.exists(infer_model):
infer_model = os.path.join(model_dir, 'inference.pdmodel')
infer_params = os.path.join(model_dir, 'inference.pdiparams')
if not os.path.exists(infer_model):
raise ValueError(
"Cannot find any inference model in dir: {},".format(model_dir))
config = Config(infer_model, infer_params)
if device == 'GPU':
# initial GPU memory(M), device ID
config.enable_use_gpu(200, 0)
# optimize graph and fuse op
config.switch_ir_optim(True)
elif device == 'XPU':
if config.lite_engine_enabled():
config.enable_lite_engine()
config.enable_xpu(10 * 1024 * 1024)
elif device == 'NPU':
if config.lite_engine_enabled():
config.enable_lite_engine()
config.enable_custom_device('npu')
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(cpu_threads)