-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
143 lines (126 loc) · 6.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gym
import os
import numpy as np
from time import time
from collections import deque
from Enviroment.MultiEnvs import MultiEnviroment, MultiEnviromentSync
from gym import wrappers
class train_progress_manager(object):
"""This object is responsible of monitoring train progress, logging results"""
def __init__(self, train_dir, solved_score, score_scope, logger, checkpoint_steps=0.2, train_episodes=1000000, temporal_frequency=60**2):
self.train_dir = train_dir
self.ckp_dir = os.path.join(train_dir, 'checkpoints')
self.videos_dir = os.path.join(train_dir, 'videos')
os.makedirs(self.ckp_dir, exist_ok=True)
os.makedirs(self.videos_dir, exist_ok=True)
self.solved_score = solved_score
self.checkpoint_steps = checkpoint_steps
self.temporal_frequency = temporal_frequency
self.next_progress_checkpoint = 1
self.next_time_checkpoint = 1
self.start_time = time()
self.logger = logger
self.score_scope = deque(maxlen=score_scope)
self.episodes_done = 0
self.train_episodes = train_episodes
self.training_complete = False
def report_episode(self, episode_score, episode_length):
self.score_scope.append(episode_score)
score_scope_avg = np.mean(self.score_scope)
self.logger.log_episode(episode_score, score_scope_avg, episode_length)
time_passed = time() - self.start_time
save_path = None
if score_scope_avg > self.next_progress_checkpoint * self.checkpoint_steps * self.solved_score:
save_path = os.path.join(self.ckp_dir, "progress_ckp-_%.5f.pt" % score_scope_avg)
self.next_progress_checkpoint += 1
elif time_passed > self.temporal_frequency * self.next_time_checkpoint:
save_path = os.path.join(self.ckp_dir,"time_ckp_%.3f.pt"%(time_passed/360))
self.next_time_checkpoint += 1
self.episodes_done += 1
if score_scope_avg >= self.solved_score:
print("Solved in %d episodes" % self.episodes_done)
self.training_complete = True
if self.episodes_done >= self.train_episodes:
self.training_complete = True
return save_path
def report_test(self, test_score):
self.logger.add_costume_log("Test-score", self.episodes_done, test_score)
def train_agent_multi_env(env_builder, agent, progress_manager, test_frequency=250, test_episodes=1, save_videos=False):
"""Train agent that can train with multiEnv objects"""
multi_env = MultiEnviroment(env_builder, agent.hp['concurrent_epsiodes'])
# multi_env = MultiEnviromentSync(env_builder, agent.hp['concurrent_epsiodes'])
total_scores = [0 for _ in range(agent.hp['concurrent_epsiodes'])]
total_lengths = [0 for _ in range(agent.hp['concurrent_epsiodes'])]
states = multi_env.get_initial_state()
while not progress_manager.training_complete:
actions = agent.process_states(states)
next_states, rewards, is_next_state_terminals, infos = multi_env.step(actions)
agent.update_step_results(next_states, rewards, is_next_state_terminals)
states = next_states
for i, (reward, done) in enumerate(zip(rewards, is_next_state_terminals)):
total_scores[i] += reward
total_lengths[i] += 1
if done:
save_path = progress_manager.report_episode(total_scores[i], total_lengths[i])
if save_path is not None:
agent.save_state(save_path)
total_scores[i] = 0
total_lengths[i] = 0
if progress_manager.episodes_done % test_frequency == 0:
# Test model
if (progress_manager.episodes_done + 1) % test_frequency == 0:
test_env = env_builder()
if save_videos:
test_env = gym.wrappers.Monitor(test_env, os.path.join(progress_manager.videos_dir, "test_%d" % (
progress_manager.episodes_done + 1)), video_callable=lambda episode_id: True,
force=True)
test_score = test(test_env, agent, test_episodes)
else:
test_score = test(test_env, agent, test_episodes)
progress_manager.report_test(test_score)
test_env.close()
multi_env.close()
def train_agent(env_generator, agent, progress_manager, test_frequency=250, test_episodes=1, save_videos=False):
"""Train agent on a regular gym enviroment"""
train_env = env_generator()
while not progress_manager.training_complete:
episode_rewards = run_episode(train_env, agent)
# update logger
save_path = progress_manager.report_episode(np.sum(episode_rewards), len(episode_rewards))
if save_path is not None:
agent.save_state(save_path)
# Test model
if (progress_manager.episodes_done+1) % test_frequency == 0:
test_env = env_generator(test_config=True)
if save_videos:
test_env = gym.wrappers.Monitor(test_env, os.path.join(progress_manager.videos_dir, "test_%d" % (progress_manager.episodes_done+1)), video_callable=lambda episode_id: True, force=True)
test_score = test(test_env, agent, test_episodes)
else:
test_score = test(test_env, agent, test_episodes)
progress_manager.report_test(test_score)
test_env.close()
agent.save_state(os.path.join(progress_manager.train_dir, "Final-weights.pth"))
train_env.close()
def run_episode(env, agent, render=False):
"""Runs a full episode of a regular gym enviroment"""
done = False
state = env.reset()
episode_rewards = []
while not done:
if render:
env.render()
action = agent.process_new_state(state)
state, reward, done, info = env.step(action)
is_terminal = done
agent.process_output(state, reward, is_terminal)
episode_rewards += [reward]
return episode_rewards
def test(env, actor, test_episodes=1, render=False):
actor.train = False
episodes_total_rewards = []
for i in range(test_episodes):
episode_scores = run_episode(env, actor,render)
episodes_total_rewards += [np.sum(episode_scores)]
score = np.mean(episodes_total_rewards)
actor.train = True
return score