-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfused_attention.py
865 lines (805 loc) · 23.8 KB
/
fused_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
"""
Fused Attention
===============
This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf)
Credits: OpenAI kernel team
Extra Credits:
- Original flash attention paper (https://arxiv.org/abs/2205.14135)
- Rabe and Staats (https://arxiv.org/pdf/2112.05682v2.pdf)
"""
import pytest
import torch
import triton
import triton.language as tl
def is_hip():
return triton.runtime.driver.active.get_current_target().backend == "hip"
@triton.jit
def _attn_fwd_inner(
acc,
l_i,
m_i,
q, #
K_block_ptr,
V_block_ptr, #
start_m,
qk_scale, #
BLOCK_M: tl.constexpr,
HEAD_DIM: tl.constexpr,
BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr,
offs_m: tl.constexpr,
offs_n: tl.constexpr, #
N_CTX: tl.constexpr,
fp8_v: tl.constexpr,
):
# range of values handled by this stage
if STAGE == 1:
lo, hi = 0, start_m * BLOCK_M
elif STAGE == 2:
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
lo = tl.multiple_of(lo, BLOCK_M)
# causal = False
else:
lo, hi = 0, N_CTX
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
# loop over k, v and update accumulator
for start_n in range(lo, hi, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
k = tl.load(K_block_ptr)
qk = tl.dot(q, k)
if STAGE == 2:
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
qk = qk * qk_scale + tl.where(mask, 0, -1.0e6)
m_ij = tl.maximum(m_i, tl.max(qk, 1))
qk -= m_ij[:, None]
else:
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
qk = qk * qk_scale - m_ij[:, None]
p = tl.math.exp2(qk)
l_ij = tl.sum(p, 1)
# -- update m_i and l_i
alpha = tl.math.exp2(m_i - m_ij)
l_i = l_i * alpha + l_ij
# -- update output accumulator --
acc = acc * alpha[:, None]
# update acc
v = tl.load(V_block_ptr)
if fp8_v:
p = p.to(tl.float8e5)
else:
p = p.to(tl.float16)
acc = tl.dot(p, v, acc)
# update m_i and l_i
m_i = m_ij
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
return acc, l_i, m_i
# We don't run auto-tuning every time to keep the tutorial fast. Keeping
# the code below and commenting out the equivalent parameters is convenient for
# re-tuning.
configs = [
triton.Config({"BLOCK_M": BM, "BLOCK_N": BN}, num_stages=s, num_warps=w)
for BM in [64, 128]
for BN in [32, 64]
for s in ([1] if is_hip() else [3, 4, 7])
for w in [4, 8]
]
def keep(conf):
BLOCK_M = conf.kwargs["BLOCK_M"]
BLOCK_N = conf.kwargs["BLOCK_N"]
if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8:
return False
return True
@triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
@triton.jit
def _attn_fwd(
Q,
K,
V,
sm_scale,
M,
Out, #
stride_qz,
stride_qh,
stride_qm,
stride_qk, #
stride_kz,
stride_kh,
stride_kn,
stride_kk, #
stride_vz,
stride_vh,
stride_vk,
stride_vn, #
stride_oz,
stride_oh,
stride_om,
stride_on, #
Z,
H,
N_CTX, #
HEAD_DIM: tl.constexpr, #
BLOCK_M: tl.constexpr, #
BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr, #
):
tl.static_assert(BLOCK_N <= HEAD_DIM)
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
# block pointers
Q_block_ptr = tl.make_block_ptr(
base=Q + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_vk, stride_vn),
offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM),
order=v_order,
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(HEAD_DIM, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_N),
order=(0, 1),
)
O_block_ptr = tl.make_block_ptr(
base=Out + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
# load scales
qk_scale = sm_scale
qk_scale *= 1.44269504 # 1/log(2)
# load q: it will stay in SRAM throughout
q = tl.load(Q_block_ptr)
# stage 1: off-band
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
if STAGE & 1:
acc, l_i, m_i = _attn_fwd_inner(
acc,
l_i,
m_i,
q,
K_block_ptr,
V_block_ptr, #
start_m,
qk_scale, #
BLOCK_M,
HEAD_DIM,
BLOCK_N, #
4 - STAGE,
offs_m,
offs_n,
N_CTX,
V.dtype.element_ty == tl.float8e5, #
)
# stage 2: on-band
if STAGE & 2:
# barrier makes it easier for compielr to schedule the
# two loops independently
acc, l_i, m_i = _attn_fwd_inner(
acc,
l_i,
m_i,
q,
K_block_ptr,
V_block_ptr, #
start_m,
qk_scale, #
BLOCK_M,
HEAD_DIM,
BLOCK_N, #
2,
offs_m,
offs_n,
N_CTX,
V.dtype.element_ty == tl.float8e5, #
)
# epilogue
m_i += tl.math.log2(l_i)
acc = acc / l_i[:, None]
m_ptrs = M + off_hz * N_CTX + offs_m
tl.store(m_ptrs, m_i)
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
@triton.jit
def _attn_bwd_preprocess(
O,
DO, #
Delta, #
Z,
H,
N_CTX, #
BLOCK_M: tl.constexpr,
HEAD_DIM: tl.constexpr, #
):
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
off_hz = tl.program_id(1)
off_n = tl.arange(0, HEAD_DIM)
# load
o = tl.load(
O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
)
do = tl.load(
DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
).to(tl.float32)
delta = tl.sum(o * do, axis=1)
# write-back
tl.store(Delta + off_hz * N_CTX + off_m, delta)
# The main inner-loop logic for computing dK and dV.
@triton.jit
def _attn_bwd_dkdv(
dk,
dv, #
Q,
k,
v,
sm_scale, #
DO, #
M,
D, #
# shared by Q/K/V/DO.
stride_tok,
stride_d, #
H,
N_CTX,
BLOCK_M1: tl.constexpr, #
BLOCK_N1: tl.constexpr, #
HEAD_DIM: tl.constexpr, #
# Filled in by the wrapper.
start_n,
start_m,
num_steps, #
MASK: tl.constexpr,
):
offs_m = start_m + tl.arange(0, BLOCK_M1)
offs_n = start_n + tl.arange(0, BLOCK_N1)
offs_k = tl.arange(0, HEAD_DIM)
qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d
do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
# BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
curr_m = start_m
step_m = BLOCK_M1
for blk_idx in range(num_steps):
qT = tl.load(qT_ptrs)
# Load m before computing qk to reduce pipeline stall.
offs_m = curr_m + tl.arange(0, BLOCK_M1)
m = tl.load(M + offs_m)
qkT = tl.dot(k, qT)
pT = tl.math.exp2(qkT - m[None, :])
# Autoregressive masking.
if MASK:
mask = offs_m[None, :] >= offs_n[:, None]
pT = tl.where(mask, pT, 0.0)
do = tl.load(do_ptrs)
# Compute dV.
ppT = pT
ppT = ppT.to(tl.float16)
dv += tl.dot(ppT, do)
# D (= delta) is pre-divided by ds_scale.
Di = tl.load(D + offs_m)
# Compute dP and dS.
dpT = tl.dot(v, tl.trans(do)).to(tl.float32)
dsT = pT * (dpT - Di[None, :])
dsT = dsT.to(tl.float16)
dk += tl.dot(dsT, tl.trans(qT))
# Increment pointers.
curr_m += step_m
qT_ptrs += step_m * stride_tok
do_ptrs += step_m * stride_tok
return dk, dv
# the main inner-loop logic for computing dQ
@triton.jit
def _attn_bwd_dq(
dq,
q,
K,
V, #
do,
m,
D,
# shared by Q/K/V/DO.
stride_tok,
stride_d, #
H,
N_CTX, #
BLOCK_M2: tl.constexpr, #
BLOCK_N2: tl.constexpr, #
HEAD_DIM: tl.constexpr,
# Filled in by the wrapper.
start_m,
start_n,
num_steps, #
MASK: tl.constexpr,
):
offs_m = start_m + tl.arange(0, BLOCK_M2)
offs_n = start_n + tl.arange(0, BLOCK_N2)
offs_k = tl.arange(0, HEAD_DIM)
kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
# D (= delta) is pre-divided by ds_scale.
Di = tl.load(D + offs_m)
# BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
curr_n = start_n
step_n = BLOCK_N2
for blk_idx in range(num_steps):
kT = tl.load(kT_ptrs)
vT = tl.load(vT_ptrs)
qk = tl.dot(q, kT)
p = tl.math.exp2(qk - m)
# Autoregressive masking.
if MASK:
offs_n = curr_n + tl.arange(0, BLOCK_N2)
mask = offs_m[:, None] >= offs_n[None, :]
p = tl.where(mask, p, 0.0)
# Compute dP and dS.
dp = tl.dot(do, vT).to(tl.float32)
ds = p * (dp - Di[:, None])
ds = ds.to(tl.float16)
# Compute dQ.
# NOTE: We need to de-scale dq in the end, because kT was pre-scaled.
dq += tl.dot(ds, tl.trans(kT))
# Increment pointers.
curr_n += step_n
kT_ptrs += step_n * stride_tok
vT_ptrs += step_n * stride_tok
return dq
@triton.jit
def _attn_bwd(
Q,
K,
V,
sm_scale, #
DO, #
DQ,
DK,
DV, #
M,
D,
# shared by Q/K/V/DO.
stride_z,
stride_h,
stride_tok,
stride_d, #
H,
N_CTX, #
BLOCK_M1: tl.constexpr, #
BLOCK_N1: tl.constexpr, #
BLOCK_M2: tl.constexpr, #
BLOCK_N2: tl.constexpr, #
BLK_SLICE_FACTOR: tl.constexpr, #
HEAD_DIM: tl.constexpr,
):
LN2: tl.constexpr = 0.6931471824645996 # = ln(2)
bhid = tl.program_id(2)
off_chz = (bhid * N_CTX).to(tl.int64)
adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
pid = tl.program_id(0)
# offset pointers for batch/head
Q += adj
K += adj
V += adj
DO += adj
DQ += adj
DK += adj
DV += adj
M += off_chz
D += off_chz
# load scales
offs_k = tl.arange(0, HEAD_DIM)
start_n = pid * BLOCK_N1
start_m = start_n
MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
offs_n = start_n + tl.arange(0, BLOCK_N1)
dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
# load K and V: they stay in SRAM throughout the inner loop.
k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
num_steps = BLOCK_N1 // MASK_BLOCK_M1
dk, dv = _attn_bwd_dkdv(
dk,
dv, #
Q,
k,
v,
sm_scale, #
DO, #
M,
D, #
stride_tok,
stride_d, #
H,
N_CTX, #
MASK_BLOCK_M1,
BLOCK_N1,
HEAD_DIM, #
start_n,
start_m,
num_steps, #
MASK=True, #
)
start_m += num_steps * MASK_BLOCK_M1
num_steps = (N_CTX - start_m) // BLOCK_M1
# Compute dK and dV for non-masked blocks.
dk, dv = _attn_bwd_dkdv( #
dk,
dv, #
Q,
k,
v,
sm_scale, #
DO, #
M,
D, #
stride_tok,
stride_d, #
H,
N_CTX, #
BLOCK_M1,
BLOCK_N1,
HEAD_DIM, #
start_n,
start_m,
num_steps, #
MASK=False, #
)
dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
tl.store(dv_ptrs, dv)
# Write back dK.
dk *= sm_scale
dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
tl.store(dk_ptrs, dk)
# THIS BLOCK DOES DQ:
start_m = pid * BLOCK_M2
end_n = start_m + BLOCK_M2
MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
offs_m = start_m + tl.arange(0, BLOCK_M2)
q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32)
do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
m = tl.load(M + offs_m)
m = m[:, None]
# Compute dQ for masked (diagonal) blocks.
# NOTE: This code scans each row of QK^T backward (from right to left,
# but inside each call to _attn_bwd_dq, from left to right), but that's
# not due to anything important. I just wanted to reuse the loop
# structure for dK & dV above as much as possible.
num_steps = BLOCK_M2 // MASK_BLOCK_N2
dq = _attn_bwd_dq(
dq,
q,
K,
V, #
do,
m,
D, #
stride_tok,
stride_d, #
H,
N_CTX, #
BLOCK_M2,
MASK_BLOCK_N2,
HEAD_DIM, #
start_m,
end_n - num_steps * MASK_BLOCK_N2,
num_steps, #
MASK=True, #
)
end_n -= num_steps * MASK_BLOCK_N2
# stage 2
num_steps = end_n // BLOCK_N2
dq = _attn_bwd_dq(
dq,
q,
K,
V, #
do,
m,
D, #
stride_tok,
stride_d, #
H,
N_CTX, #
BLOCK_M2,
BLOCK_N2,
HEAD_DIM, #
start_m,
end_n - num_steps * BLOCK_N2,
num_steps, #
MASK=False, #
)
# Write back dQ.
dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
dq *= LN2
tl.store(dq_ptrs, dq)
class _attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, causal, sm_scale):
# shape constraints
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
# when v is in float8_e5m2 it is transposed.
HEAD_DIM_V = v.shape[-1]
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
o = torch.empty_like(q)
stage = 3 if causal else 1
extra_kern_args = {}
# Tuning for AMD target
if is_hip():
waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2
extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True}
grid = lambda args: (
triton.cdiv(q.shape[2], args["BLOCK_M"]),
q.shape[0] * q.shape[1],
1,
)
M = torch.empty(
(q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32
)
_attn_fwd[grid](
q,
k,
v,
sm_scale,
M,
o, #
q.stride(0),
q.stride(1),
q.stride(2),
q.stride(3), #
k.stride(0),
k.stride(1),
k.stride(2),
k.stride(3), #
v.stride(0),
v.stride(1),
v.stride(2),
v.stride(3), #
o.stride(0),
o.stride(1),
o.stride(2),
o.stride(3), #
q.shape[0],
q.shape[1], #
N_CTX=q.shape[2], #
HEAD_DIM=HEAD_DIM_K, #
STAGE=stage, #
**extra_kern_args,
)
ctx.save_for_backward(q, k, v, o, M)
ctx.grid = grid
ctx.sm_scale = sm_scale
ctx.HEAD_DIM = HEAD_DIM_K
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
q, k, v, o, M = ctx.saved_tensors
assert do.is_contiguous()
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
dq = torch.empty_like(q)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
BATCH, N_HEAD, N_CTX = q.shape[:3]
PRE_BLOCK = 128
NUM_WARPS, NUM_STAGES = 4, 5
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32
BLK_SLICE_FACTOR = 2
RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2)
arg_k = k
arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
PRE_BLOCK = 128
assert N_CTX % PRE_BLOCK == 0
pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
delta = torch.empty_like(M)
_attn_bwd_preprocess[pre_grid](
o,
do, #
delta, #
BATCH,
N_HEAD,
N_CTX, #
BLOCK_M=PRE_BLOCK,
HEAD_DIM=ctx.HEAD_DIM, #
)
grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD)
_attn_bwd[grid](
q,
arg_k,
v,
ctx.sm_scale,
do,
dq,
dk,
dv, #
M,
delta, #
q.stride(0),
q.stride(1),
q.stride(2),
q.stride(3), #
N_HEAD,
N_CTX, #
BLOCK_M1=BLOCK_M1,
BLOCK_N1=BLOCK_N1, #
BLOCK_M2=BLOCK_M2,
BLOCK_N2=BLOCK_N2, #
BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, #
HEAD_DIM=ctx.HEAD_DIM, #
num_warps=NUM_WARPS, #
num_stages=NUM_STAGES, #
)
return dq, dk, dv, None, None
attention = _attention.apply
@pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)])
@pytest.mark.parametrize("causal", [True])
def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16):
torch.manual_seed(20)
q = (
torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda")
.normal_(mean=0.0, std=0.5)
.requires_grad_()
)
k = (
torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda")
.normal_(mean=0.0, std=0.5)
.requires_grad_()
)
v = (
torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda")
.normal_(mean=0.0, std=0.5)
.requires_grad_()
)
sm_scale = 0.5
dout = torch.randn_like(q)
# reference implementation
M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda"))
p = torch.matmul(q, k.transpose(2, 3)) * sm_scale
if causal:
p[:, :, M == 0] = float("-inf")
p = torch.softmax(p.float(), dim=-1).half()
# p = torch.exp(p)
ref_out = torch.matmul(p, v)
ref_out.backward(dout)
ref_dv, v.grad = v.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dq, q.grad = q.grad.clone(), None
# triton implementation
tri_out = attention(q, k, v, causal, sm_scale).half()
tri_out.backward(dout)
tri_dv, v.grad = v.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dq, q.grad = q.grad.clone(), None
# compare
assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0)
rtol = 0.0
# Relative tolerance workaround for known hardware limitation of MI200 GPU.
# For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices
if (
torch.version.hip is not None
and triton.runtime.driver.active.get_current_target().arch == "gfx90a"
):
rtol = 1e-2
assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol)
assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol)
assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol)
try:
from flash_attn.flash_attn_interface import (
flash_attn_qkvpacked_func as flash_attn_func,
)
HAS_FLASH = True
except BaseException:
HAS_FLASH = False
TORCH_HAS_FP8 = hasattr(torch, "float8_e5m2")
BATCH, N_HEADS, HEAD_DIM = 4, 32, 64
# vary seq length for fixed head and batch=4
configs = []
for mode in ["fwd", "bwd"]:
for causal in [True, False]:
if mode == "bwd" and not causal:
continue
configs.append(
triton.testing.Benchmark(
x_names=["N_CTX"],
x_vals=[2**i for i in range(10, 15)],
line_arg="provider",
line_vals=["triton-fp16"]
+ (["triton-fp8"] if TORCH_HAS_FP8 else [])
+ (["flash"] if HAS_FLASH else []),
line_names=["Triton [FP16]"]
+ (["Triton [FP8]"] if TORCH_HAS_FP8 else [])
+ (["Flash-2"] if HAS_FLASH else []),
styles=[("red", "-"), ("blue", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}",
args={
"H": N_HEADS,
"BATCH": BATCH,
"HEAD_DIM": HEAD_DIM,
"mode": mode,
"causal": causal,
},
)
)
@triton.testing.perf_report(configs)
def bench_flash_attention(
BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"
):
assert mode in ["fwd", "bwd"]
warmup = 25
rep = 100
dtype = torch.float16
if "triton" in provider:
q = torch.randn(
(BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True
)
k = torch.randn(
(BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True
)
v = torch.randn(
(BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True
)
if mode == "fwd" and "fp8" in provider:
q = q.to(torch.float8_e5m2)
k = k.to(torch.float8_e5m2)
v = v.permute(0, 1, 3, 2).contiguous()
v = v.permute(0, 1, 3, 2)
v = v.to(torch.float8_e5m2)
sm_scale = 1.3
fn = lambda: attention(q, k, v, causal, sm_scale)
if mode == "bwd":
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
if provider == "flash":
qkv = torch.randn(
(BATCH, N_CTX, 3, H, HEAD_DIM),
dtype=dtype,
device=device,
requires_grad=True,
)
fn = lambda: flash_attn_func(qkv, causal=causal)
if mode == "bwd":
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM
total_flops = 2 * flops_per_matmul
if causal:
total_flops *= 0.5
if mode == "bwd":
total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute)
return total_flops / ms * 1e-9
if __name__ == "__main__":
# only works on post-Ampere GPUs right now
bench_flash_attention.run(save_path=".", print_data=True)