This repository has been archived by the owner on Sep 25, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
212 lines (185 loc) · 7.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
#!/usr/bin/env python3
"""
Amca: The RL-Based Backgammon Agent
https://github.com/ardabbour/amca/
Abdul Rahman Dabbour, Omid Khorsand Kazemy, Yusuf Izmirlioglu
Cognitive Robotics Laboratory
Faculty of Engineering and Natural Sciences
Sabanci University
This script allows us to train an RL agent using Gym and Stable Baselines.
Uses the default hyperparameters of each algorithm. Saves a graph of the
training process, showing mean reward vs. timesteps.
"""
# Standard imports
import os
import argparse
# Scientific Python imports
import numpy as np
import matplotlib.pyplot as plt
# Reinforcement Learning imports
import gym
from stable_baselines import A2C, ACER, ACKTR, DDPG, DQN, GAIL, PPO2, TRPO, SAC
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds
from stable_baselines.common.policies import MlpPolicy, MlpLstmPolicy, MlpLnLstmPolicy, CnnPolicy, CnnLstmPolicy, CnnLnLstmPolicy
from stable_baselines.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines.ddpg import policies as ddpg_policies
from stable_baselines.deepq import policies as dqn_policies
from stable_baselines.results_plotter import load_results, ts2xy
from stable_baselines.sac import policies as sac_policies
# Amca imports
import amca
def make_env(env_id, algorithm, rank, seed=0):
"""
Utility function for multiprocessed env.
:param env_id: (str) the environment ID
:param num_env: (int) the number of environment you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
"""
def _init():
env = gym.make(env_id)
env.seed(seed + rank)
os.makedirs(ARGS.log_directory, exist_ok=True)
env = Monitor(env, ARGS.log_directory, allow_early_resets=True)
return env
set_global_seeds(seed)
return _init
def movingAverage(values, window):
"""
Smooth values by doing a moving average
:param values: (numpy array)
:param window: (int)
:return: (numpy array)
"""
weights = np.repeat(1.0, window) / window
return np.convolve(values, weights, 'valid')
def plot_results(logdir, title, window):
"""
plot the results
:param log_folder: (str) the save location of the results to plot
:param title: (str) the title of the task to plot
"""
x, y = ts2xy(load_results(logdir), 'timesteps')
y = movingAverage(y, window)
# Truncate x
x = x[len(x) - len(y):]
plt.plot(x, y)
plt.xlabel('Timesteps')
plt.ylabel('Mean Reward per {} timestep'.format(window))
plt.title('{} Training Performance'.format(title))
plt.savefig('{}_training_performance.pdf'.format(title))
if __name__ == "__main__":
PARSER = argparse.ArgumentParser(description='Train an agent using RL')
PARSER.add_argument('--name', '-n',
help='Path to the the model to be trained.',
default='amca/models/new_model.pkl',
type=str)
PARSER.add_argument('--cont', '-c',
help='Path to the model to continue training.',
default='None',
type=str)
PARSER.add_argument('--log_directory', '-l',
help='Directory to store log files.',
default='logs/',
type=str)
PARSER.add_argument('--policy', '-p',
help='Policy network type to use in RL Algorithm.',
default='MLP')
PARSER.add_argument('--algorithm', '-a',
help='RL Algorithm to use for training.',
default='DQN',
type=str)
PARSER.add_argument('--timesteps', '-t',
help='Number of timesteps to train.',
default=100000,
type=int)
PARSER.add_argument('--multiprocess', '-m',
help='How many multiprocesses to use.',
default=1,
type=int)
PARSER.add_argument('--graph', '-g',
help='Plot a performance graph of the training.',
default=1,
type=int)
PARSER.add_argument('--window', '-w',
help='Moving average window for mean reward plotting.',
default=50,
type=int)
PARSER.add_argument('--verbose', '-v',
help='Verbosity.',
default=1,
type=int)
ARGS = PARSER.parse_args()
if ARGS.algorithm.lower() == 'a2c':
algorithm = A2C
elif ARGS.algorithm.lower() == 'acer':
algorithm = ACER
elif ARGS.algorithm.lower() == 'acktr':
algorithm = ACKTR
elif ARGS.algorithm.lower() == 'ddpg':
algorithm = DDPG
MlpPolicy = ddpg_policies.MlpPolicy
CnnPolicy = ddpg_policies.CnnPolicy
LnMlpPolicy = ddpg_policies.LnMlpPolicy
LnCnnPolicy = ddpg_policies.LnCnnPolicy
elif ARGS.algorithm.lower() == 'dqn':
algorithm = DQN
MlpPolicy = dqn_policies.MlpPolicy
CnnPolicy = dqn_policies.CnnPolicy
LnMlpPolicy = dqn_policies.LnMlpPolicy
LnCnnPolicy = dqn_policies.LnCnnPolicy
elif ARGS.algorithm.lower() == 'gail':
algorithm = GAIL
elif ARGS.algorithm.lower() == 'ppo':
algorithm = PPO2
elif ARGS.algorithm.lower() == 'sac':
algorithm = SAC
MlpPolicy = sac_policies.MlpPolicy
CnnPolicy = sac_policies.CnnPolicy
LnMlpPolicy = sac_policies.LnMlpPolicy
LnCnnPolicy = sac_policies.LnCnnPolicy
elif ARGS.algorithm.lower() == 'trpo':
algorithm = TRPO
else:
raise ValueError('Unidentified algorithm chosen')
if ARGS.policy.lower() == 'mlp':
policy = MlpPolicy
elif ARGS.policy.lower() == 'lnmlp':
policy = LnMlpPolicy
elif ARGS.policy.lower() == 'mlplstm':
policy = MlpLstmPolicy
elif ARGS.policy.lower() == 'mlplnlstm':
policy = MlpLnLstmPolicy
elif ARGS.policy.lower() == 'cnn':
policy = CnnPolicy
elif ARGS.policy.lower() == 'lncnn':
policy = LnCnnPolicy
elif ARGS.policy.lower() == 'cnnlstm':
policy = CnnLstmPolicy
elif ARGS.policy.lower() == 'cnnlnlstm':
policy = CnnLnLstmPolicy
else:
raise ValueError('Unidentified policy chosen')
if algorithm in [DDPG, GAIL, SAC]:
env_id = 'BackgammonRandomContinuousEnv-v0'
else:
env_id = 'BackgammonRandomEnv-v0'
os.makedirs(ARGS.log_directory, exist_ok=True)
if ARGS.multiprocess > 1:
env = SubprocVecEnv([make_env(env_id, algorithm, i)
for i in range(int(ARGS.multiprocess))])
else:
env = gym.make(env_id)
env = Monitor(env, ARGS.log_directory, allow_early_resets=True)
env = DummyVecEnv([lambda: env])
if ARGS.cont == 'None':
model = algorithm(policy, env, verbose=ARGS.verbose)
else:
model = algorithm.load(ARGS.cont, verbose=ARGS.verbose)
model.set_env(env)
model.learn(total_timesteps=ARGS.timesteps)
model.save('{}'.format(ARGS.name))
if ARGS.graph:
plot_results(ARGS.log_directory, ARGS.algorithm, ARGS.window)