This repository has been archived by the owner on Sep 25, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsarsa_train.py
110 lines (94 loc) · 3.92 KB
/
sarsa_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# -*- coding: utf-8 -*-
#!/usr/bin/env python3
"""
Amca: The RL-Based Backgammon Agent
https://github.com/ardabbour/amca/
Abdul Rahman Dabbour, Omid Khorsand Kazemy, Yusuf Izmirlioglu
Cognitive Robotics Laboratory
Faculty of Engineering and Natural Sciences
Sabanci University
This script allows us to train a Backgammon agent using the SARSA algorithm.
"""
import argparse
import pickle
from amca.game import SarsaGame
from amca.agents import SarsaAgent, RandomSarsaAgent
def train(agent_train, opponent, maxmove):
gamei = SarsaGame(agent_train, opponent)
num_move = 0
gamei.roll_dice()
while (num_move < maxmove) and (not gamei.is_over()):
# Agent turn
if not gamei.is_over():
curstate = gamei.get_state3(gamei.get_dice(0))
possible_actions, their_rewards = gamei.get_actions(
agent_train, gamei.get_dice(0))
curaction, action_index = agent_train.chooseAction(
curstate, possible_actions)
gamei.update_board(agent_train, curaction)
reward = their_rewards[action_index]
nextstate = gamei.get_state3(gamei.get_dice(1))
if not gamei.is_over():
curstate = gamei.get_state3(gamei.get_dice(1))
possible_actions, their_rewards = gamei.get_actions(
agent_train, gamei.get_dice(1))
nextaction, action_index = agent_train.chooseAction(
curstate, possible_actions)
gamei.update_board(agent_train, nextaction)
agent_train.learn(curstate, curaction,
reward, nextstate, nextaction)
reward = their_rewards[action_index]
# Opponent turn
gamei.roll_dice()
for i in range(2):
if not gamei.is_over():
nextstate = gamei.get_dice(i)
possible_actions, their_rewards = gamei.get_actions(
opponent, gamei.get_dice(i))
oppaction, action_index = opponent.chooseAction(
nextstate, possible_actions)
gamei.update_board(opponent, oppaction)
gamei.roll_dice()
nextstate = gamei.get_state3(gamei.get_dice(0))
agent_train.learn(curstate, curaction,
reward, nextstate, nextaction)
num_move += 1
return agent_train
if __name__ == "__main__":
PARSER = argparse.ArgumentParser(description='Train an agent using RL')
PARSER.add_argument('--name', '-n',
help='Name of the agent to be trained.',
default='amca/models/sarsa-vs_random-1M.pkl',
type=str)
PARSER.add_argument('--maxmove', '-m',
help='Maximum number of moves per game.',
default=100)
PARSER.add_argument('--games', '-g',
help='Number of games to play.',
default=1000000)
PARSER.add_argument('--verbose', '-v',
help='Toggle verbosity',
default=1)
PARSER.add_argument('--continued', '-c',
help='If the agent is saved, load it and continue training',
default=0)
ARGS = PARSER.parse_args()
if bool(int(ARGS.continued)):
infilename = ARGS.name
with open(infilename, 'rb') as f:
agent = pickle.load(f)
else:
agent = SarsaAgent()
for i in range(int(ARGS.games)):
if int(ARGS.verbose):
print('Completed {} games'.format(i))
try:
agent = train(agent, RandomSarsaAgent('opponent'), maxmove=int(ARGS.maxmove))
except:
pass
if bool(int(ARGS.continued)):
outfilename = '{}-updated.pkl'.format(ARGS.name)
else:
outfilename = ARGS.name
with open(outfilename, 'wb') as f:
pickle.dump(agent, f)