You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
International standards are realigning to a global north coordinate system. Pysolar has refactored their code to global north, and the NREL standard is to global north
Quote from wikipedia: There are several conventions for the solar azimuth; however, it is traditionally defined as the angle between a line due south and the shadow cast by a vertical rod on Earth. This convention states the angle is positive if the shadow is east of south and negative if it is west of south.[1][2] For example, due east would be 90° and due west would be -90°. Another convention is the reverse; it also has the origin at due south, but measures angles clockwise, so that due east is now negative and west now positive.[3] However, despite tradition, the most commonly accepted convention for analyzing solar irradiation, e.g. for solar energy applications, is clockwise from due north, so east is 90°, south is 180°, and west is 270°. This is the definition used by NREL in their solar position calculators[4] and is also the convention used in the formulas presented here. However, Landsat photos and other USGS products, while also defining azimuthal angles relative to due north, take counterclockwise angles as negative.[5]
The text was updated successfully, but these errors were encountered:
International standards are realigning to a global north coordinate system. Pysolar has refactored their code to global north, and the NREL standard is to global north
Quote from wikipedia:
There are several conventions for the solar azimuth; however, it is traditionally defined as the angle between a line due south and the shadow cast by a vertical rod on Earth. This convention states the angle is positive if the shadow is east of south and negative if it is west of south.[1][2] For example, due east would be 90° and due west would be -90°. Another convention is the reverse; it also has the origin at due south, but measures angles clockwise, so that due east is now negative and west now positive.[3]
However, despite tradition, the most commonly accepted convention for analyzing solar irradiation, e.g. for solar energy applications, is clockwise from due north, so east is 90°, south is 180°, and west is 270°. This is the definition used by NREL in their solar position calculators[4] and is also the convention used in the formulas presented here. However, Landsat photos and other USGS products, while also defining azimuthal angles relative to due north, take counterclockwise angles as negative.[5]
The text was updated successfully, but these errors were encountered: