-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02obj_ij.c
270 lines (203 loc) · 7.54 KB
/
02obj_ij.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of The University of Texas nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include "blis.h"
void init_dmatrix_by_rows( dim_t m, dim_t n, double* a, inc_t rs, inc_t cs );
void init_dmatrix_by_cols( dim_t m, dim_t n, double* a, inc_t rs, inc_t cs );
void init_dobj_by_cols( obj_t* a );
void init_zobj_by_cols( obj_t* a );
int main( int argc, char** argv )
{
obj_t a1, a2, a3;
num_t dt;
dim_t m, n;
inc_t rs, cs;
dim_t i, j;
//
// This file demonstrates accessing and updating individual matrix elements
// through the BLIS object API.
//
//
// Example 1: Create an object and then individually access/view some of
// its elements.
//
printf( "\n#\n# -- Example 1 --\n#\n\n" );
// We'll use these parameters for the following examples.
dt = BLIS_DOUBLE;
m = 4; n = 5; rs = 1; cs = m;
// Create a object with known elements using the same approach as the
// previous example file.
double* p1 = malloc( m * n * sizeof( double ) );
init_dmatrix_by_cols( m, n, p1, rs, cs );
bli_obj_create_with_attached_buffer( dt, m, n, p1, rs, cs, &a1 );
bli_printm( "matrix 'a1' (initial state)", &a1, "%5.1f", "" );
// Regardless of how we create our object--whether via bli_obj_create() or
// via attaching an existing buffer to a bufferless object--we can access
// individual elements by specifying their offsets. The output value is
// broken up by real and imaginary component. (When accessing real matrices,
// the imaginary component will always be zero.)
i = 1; j = 3;
double alpha_r, alpha_i;
bli_getijm( i, j, &a1, &alpha_r, &alpha_i );
// Here, we print out the element "returned" by bli_getijm().
printf( "element (%2d,%2d) of matrix 'a1' (real + imag): %5.1f + %5.1f\n", ( int )i, ( int )j, alpha_r, alpha_i );
// Let's query a few more elements.
i = 0; j = 2;
bli_getijm( i, j, &a1, &alpha_r, &alpha_i );
printf( "element (%2d,%2d) of matrix 'a1' (real + imag): %5.1f + %5.1f\n", ( int )i, ( int )j, alpha_r, alpha_i );
i = 3; j = 4;
bli_getijm( i, j, &a1, &alpha_r, &alpha_i );
printf( "element (%2d,%2d) of matrix 'a1' (real + imag): %5.1f + %5.1f\n", ( int )i, ( int )j, alpha_r, alpha_i );
printf( "\n" );
//
// Example 2: Modify individual elements of an existing matrix.
//
printf( "\n#\n# -- Example 2 --\n#\n\n" );
// Now let's change a few elements. Even if we set the imaginary
// argument to a non-zero value, argument is ignored since we're
// modifying a real matrix. If a1 were a complex object, those
// values would be stored verbatim into the appropriate matrix
// elements (see example for a3 below).
alpha_r = -3.0; alpha_i = 0.0; i = 1; j = 3;
bli_setijm( alpha_r, alpha_i, i, j, &a1 );
alpha_r = -9.0; alpha_i = -1.0; i = 0; j = 2;
bli_setijm( alpha_r, alpha_i, i, j, &a1 );
alpha_r = -7.0; alpha_i = 2.0; i = 3; j = 4;
bli_setijm( alpha_r, alpha_i, i, j, &a1 );
// Print the matrix again so we can see the update elements.
bli_printm( "matrix 'a1' (modified state)", &a1, "%5.1f", "" );
// Next, let's create a regular object (with a buffer) and then
// initialize its elements using bli_setijm().
bli_obj_create( dt, m, n, rs, cs, &a2 );
// See definition of init_dobj_by_cols() below.
init_dobj_by_cols( &a2 );
// Because we initialized a2 in the same manner as a1 (by columns),
// it should contain the same initial state as a1.
bli_printm( "matrix 'a2'", &a2, "%5.1f", "" );
//
// Example 3: Modify individual elements of an existing complex matrix.
//
printf( "\n#\n# -- Example 3 --\n#\n\n" );
// Create and initialize a complex object.
dt = BLIS_DCOMPLEX;
bli_obj_create( dt, m, n, rs, cs, &a3 );
// Initialize the matrix elements. (See definition of init_dobj_by_cols()
// below).
init_zobj_by_cols( &a3 );
// Print the complex matrix.
bli_printm( "matrix 'a3' (initial state)", &a3, "%5.1f", "" );
i = 3; j = 0;
bli_getijm( i, j, &a3, &alpha_r, &alpha_i );
alpha_r *= -1.0; alpha_i *= -1.0;
bli_setijm( alpha_r, alpha_i, i, j, &a3 );
i = 3; j = 4;
bli_getijm( i, j, &a3, &alpha_r, &alpha_i );
alpha_r *= -1.0; alpha_i *= -1.0;
bli_setijm( alpha_r, alpha_i, i, j, &a3 );
i = 0; j = 4;
bli_getijm( i, j, &a3, &alpha_r, &alpha_i );
alpha_r *= -1.0; alpha_i *= -1.0;
bli_setijm( alpha_r, alpha_i, i, j, &a3 );
// Print the matrix again so we can see the update elements.
bli_printm( "matrix 'a3' (modified state)", &a3, "%5.1f", "" );
// Free the memory arrays we allocated.
free( p1 );
// Free the objects we created.
bli_obj_free( &a2 );
bli_obj_free( &a3 );
return 0;
}
// -----------------------------------------------------------------------------
void init_dmatrix_by_rows( dim_t m, dim_t n, double* a, inc_t rs, inc_t cs )
{
dim_t i, j;
double alpha = 0.0;
// Step through a matrix by rows, assigning each element a unique
// value, starting at 0.
for ( i = 0; i < m; ++i )
{
for ( j = 0; j < n; ++j )
{
double* a_ij = a + i*rs + j*cs;
*a_ij = alpha;
alpha += 1.0;
}
}
}
void init_dmatrix_by_cols( dim_t m, dim_t n, double* a, inc_t rs, inc_t cs )
{
dim_t i, j;
double alpha = 0.0;
// Step through a matrix by columns, assigning each element a unique
// value, starting at 0.
for ( j = 0; j < n; ++j )
{
for ( i = 0; i < m; ++i )
{
double* a_ij = a + i*rs + j*cs;
*a_ij = alpha;
alpha += 1.0;
}
}
}
void init_dobj_by_cols( obj_t* a )
{
dim_t m = bli_obj_length( a );
dim_t n = bli_obj_width( a );
dim_t i, j;
double alpha = 0.0;
// Step through a matrix by columns, assigning each element a unique
// value, starting at 0.
for ( j = 0; j < n; ++j )
{
for ( i = 0; i < m; ++i )
{
bli_setijm( alpha, 0.0, i, j, a );
alpha += 1.0;
}
}
}
void init_zobj_by_cols( obj_t* a )
{
dim_t m = bli_obj_length( a );
dim_t n = bli_obj_width( a );
dim_t i, j;
double alpha = 0.0;
// Step through a matrix by columns, assigning each real and imaginary
// element a unique value, starting at 0.
for ( j = 0; j < n; ++j )
{
for ( i = 0; i < m; ++i )
{
bli_setijm( alpha, alpha + 1.0, i, j, a );
alpha += 2.0;
}
}
}