Skip to content

Latest commit

 

History

History
79 lines (54 loc) · 3.29 KB

README.rst

File metadata and controls

79 lines (54 loc) · 3.29 KB

Parsernaam: ML-Assisted Name Parser

https://static.pepy.tech/badge/parsernaam

Most common name parsers use crude pattern matching and the sequence of strings, e.g., the last word is the last name, to parse names. This approach is limited and fragile, especially for Indian names. We take a machine-learning approach to the problem. Using the large voter registration data in India and US, we build machine-learning-based name parsers that predict whether the string is a first or last name.

For Indian electoral rolls, we assume the last name is the word in the name that is shared by multiple family members. (We table the expansion to include compound last names---extremely rare in India---till the next iteration.)

Gradio App.

parsernaam on HF

Installation

pip install parsernaam

General API

The general API is as follows:

# Import the library
from parsernaam.parsernaam import ParseNames

positional arguments:
  df                 dataframe with Names to parse (with column name 'name')

# example
df = pd.DataFrame({'name': ['Jan', 'Nicholas Turner', 'Petersen', 'Nichols Richard', 'Piet',
                                     'John Smith', 'Janssen', 'Kim Yeon']})
df = ParseNames.parse(df)
print(df.to_markdown())
|    | name            | parsed_name                                                                   |
|---:|:----------------|:------------------------------------------------------------------------------|
|  0 | Jan             | {'name': 'Jan', 'type': 'first', 'prob': 0.6769440174102783}                  |
|  1 | Nicholas Turner | {'name': 'Nicholas Turner', 'type': 'first_last', 'prob': 0.9990382194519043} |
|  2 | Petersen        | {'name': 'Petersen', 'type': 'last', 'prob': 0.5342262387275696}              |
|  3 | Nichols Richard | {'name': 'Nichols Richard', 'type': 'last_first', 'prob': 0.9998832941055298} |
|  4 | Piet            | {'name': 'Piet', 'type': 'first', 'prob': 0.5381495952606201}                 |
|  5 | John Smith      | {'name': 'John Smith', 'type': 'first_last', 'prob': 0.9975730776786804}      |
|  6 | Janssen         | {'name': 'Janssen', 'type': 'first', 'prob': 0.5929554104804993}              |
|  7 | Kim Yeon        | {'name': 'Kim Yeon', 'type': 'last_first', 'prob': 0.9987115859985352}        |

Data

The model is trained on names from the Florida Voter Registration Data from early 2022. The data are available on the Harvard Dataverse

Authors

Rajashekar Chintalapati and Gaurav Sood

Contributing

Contributions are welcome. Please open an issue if you find a bug or have a feature request.

License

The package is released under the MIT License.