This repository has been archived by the owner on Jul 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.py
80 lines (58 loc) · 2.39 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer # makes the word a root ex. work is the same as worked, working
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.optimizers import SGD
# load training data
lemmatizer = WordNetLemmatizer()
intents = json.loads(open('intents.json').read())
words = []
classes = []
documents = []
ignore_letters = ['?', "!", '.', ',']
for intent in intents['intents']:
for pattern in intent['patterns']:
word_list = nltk.word_tokenize(pattern) # tokenize splits the sentence into words ex. hey i am john would be hey, i, am, john
words.extend(word_list)
documents.append((word_list, intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
# print(documents)
words = [lemmatizer.lemmatize(word) for word in words if word not in ignore_letters]
words = sorted(set(words)) # eliminates duplicates
# print(words)
classes = sorted(set(classes))
pickle.dump(words, open('ml_data/words.pkl', 'wb'))
pickle.dump(classes, open('ml_data/classes.pkl', 'wb'))
training = []
output_empty = [0] * len(classes)
for document in documents:
bag = []
word_patterns = document[0]
word_patters = [lemmatizer.lemmatize(word.lower()) for word in word_patterns]
for word in words:
bag.append(1) if word in word_patterns else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(document[1])] = 1
training.append([bag, output_row])
random.shuffle(training)
training = np.array(training, dtype='object')
train_x = list(training[:, 0])
train_y = list(training[:, 1])
# build neural network
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(learning_rate=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer = sgd, metrics=['accuracy'])
hist = model.fit(np.asarray(train_x).astype(np.int), np.asarray(train_y).astype(np.int), epochs=200, batch_size=5, verbose=1)
model.save('ml_data/chatbotmodel.h5', hist)
print("Done")
# https://www.centervention.com/list-of-emotions-135-words-that-express-feelings/