From 6a09ff49d7fd817eee6bacc01c772e9f326db9ce Mon Sep 17 00:00:00 2001 From: Thomas Petit-Jean <30775613+Thomzoy@users.noreply.github.com> Date: Tue, 19 Mar 2024 17:10:36 +0100 Subject: [PATCH] fix: cast single date columns to datetime --- changelog.md | 3 ++- eds_scikit/io/hive.py | 33 ++++++++++++++++++++++++++++++++- 2 files changed, 34 insertions(+), 2 deletions(-) diff --git a/changelog.md b/changelog.md index 613ad5b3..03b591c1 100644 --- a/changelog.md +++ b/changelog.md @@ -3,7 +3,8 @@ ## Unreleased ### Fixed -- pyarrow fix did not work on spark executors +- Pyarrow fix now work on spark executors. +- Fix OMOP _date columns issue ## v0.1.7 (2024-04-12) ### Changed diff --git a/eds_scikit/io/hive.py b/eds_scikit/io/hive.py index f04dd378..54c42106 100644 --- a/eds_scikit/io/hive.py +++ b/eds_scikit/io/hive.py @@ -6,12 +6,16 @@ import pandas as pd import pyarrow.parquet as pq +import pyspark.sql.functions as F +import pyspark.sql.types as T from databricks import koalas from loguru import logger from pyspark.sql import DataFrame as SparkDataFrame from pyspark.sql import SparkSession from pyspark.sql.types import LongType, StructField, StructType +from eds_scikit.utils.framework import cache + from . import settings from .base import BaseData from .data_quality import clean_dates @@ -33,6 +37,8 @@ def __init__( Union[Dict[str, Optional[List[str]]], List[str]] ] = None, database_type: Optional[str] = "OMOP", + prune_omop_date_columns: bool = True, + cache: bool = True, ): """Spark interface for OMOP data stored in a Hive database. @@ -54,6 +60,12 @@ def __init__( *deprecated* database_type: Optional[str] = 'OMOP'. Must be 'OMOP' or 'I2B2' Whether to use the native OMOP schema or to convert I2B2 inputs to OMOP. + prune_omop_date_columns: bool, default=True + In OMOP, most date values are stored both in a `_date` and `_datetime` column + Koalas has trouble handling the `date` time, so we only keep the `datetime` column + cache: bool, default=True + Whether to cache each table after preprocessing or not. + Will speed-up subsequent calculations, but can be long/infeasable for very large tables Attributes ---------- @@ -125,6 +137,8 @@ def __init__( for omop_table, i2b2_table in self.omop_to_i2b2.items(): self.i2b2_to_omop[i2b2_table].append(omop_table) + self.prune_omop_date_columns = prune_omop_date_columns + self.cache = cache self.user = os.environ["USER"] self.person_ids, self.person_ids_df = self._prepare_person_ids(person_ids) self.available_tables = self.list_available_tables() @@ -224,10 +238,27 @@ def _read_table( if "person_id" in df.columns and person_ids is not None: df = df.join(person_ids, on="person_id", how="inner") - df = df.cache().to_koalas() + if self.prune_omop_date_columns: + + # Keeping only _datetime column if corresponding _date exists + cols = [ + c + for c in df.columns + if not ((c.endswith("_date") and (f"{c}time" in df.columns))) + ] + df = df.select(cols) + + # Casting the single _date columns to timestamp: + for col in df.schema: + if col.dataType == T.DateType(): + df = df.withColumn(col.name, F.col(col.name).cast("timestamp")) + df = df.to_koalas() df = clean_dates(df) + if self.cache: + df = cache(df) + return df def persist_tables_to_folder(