diff --git a/python/pyarrow/conftest.py b/python/pyarrow/conftest.py index 554b27cbbde71..1da87a2a0f50f 100644 --- a/python/pyarrow/conftest.py +++ b/python/pyarrow/conftest.py @@ -20,10 +20,6 @@ from pyarrow import Codec from pyarrow import fs -try: - import numpy as np -except ImportError: - pass groups = [ 'acero', @@ -306,6 +302,7 @@ def unary_agg_func_fixture(): Register a unary aggregate function (mean) """ from pyarrow import compute as pc + import numpy as np def func(ctx, x): return pa.scalar(np.nanmean(x)) @@ -331,6 +328,7 @@ def varargs_agg_func_fixture(): Register a unary aggregate function """ from pyarrow import compute as pc + import numpy as np def func(ctx, *args): sum = 0.0 diff --git a/python/pyarrow/pandas_compat.py b/python/pyarrow/pandas_compat.py index e246f1263d20d..bb65c2ba5f893 100644 --- a/python/pyarrow/pandas_compat.py +++ b/python/pyarrow/pandas_compat.py @@ -30,13 +30,17 @@ import re import warnings -import numpy as np - +try: + import numpy as np +except ImportError: + np = None import pyarrow as pa from pyarrow.lib import _pandas_api, frombytes # noqa _logical_type_map = {} +_numpy_logical_type_map = {} +_pandas_logical_type_map = {} def get_logical_type_map(): @@ -85,27 +89,32 @@ def get_logical_type(arrow_type): return 'object' -_numpy_logical_type_map = { - np.bool_: 'bool', - np.int8: 'int8', - np.int16: 'int16', - np.int32: 'int32', - np.int64: 'int64', - np.uint8: 'uint8', - np.uint16: 'uint16', - np.uint32: 'uint32', - np.uint64: 'uint64', - np.float32: 'float32', - np.float64: 'float64', - 'datetime64[D]': 'date', - np.str_: 'string', - np.bytes_: 'bytes', -} +def get_numpy_logical_type_map(): + global _numpy_logical_type_map + if not _numpy_logical_type_map: + _numpy_logical_type_map.update({ + np.bool_: 'bool', + np.int8: 'int8', + np.int16: 'int16', + np.int32: 'int32', + np.int64: 'int64', + np.uint8: 'uint8', + np.uint16: 'uint16', + np.uint32: 'uint32', + np.uint64: 'uint64', + np.float32: 'float32', + np.float64: 'float64', + 'datetime64[D]': 'date', + np.str_: 'string', + np.bytes_: 'bytes', + }) + return _numpy_logical_type_map def get_logical_type_from_numpy(pandas_collection): + numpy_logical_type_map = get_numpy_logical_type_map() try: - return _numpy_logical_type_map[pandas_collection.dtype.type] + return numpy_logical_type_map[pandas_collection.dtype.type] except KeyError: if hasattr(pandas_collection.dtype, 'tz'): return 'datetimetz' @@ -1018,19 +1027,23 @@ def _is_generated_index_name(name): pattern = r'^__index_level_\d+__$' return re.match(pattern, name) is not None - -_pandas_logical_type_map = { - 'date': 'datetime64[D]', - 'datetime': 'datetime64[ns]', - 'datetimetz': 'datetime64[ns]', - 'unicode': np.str_, - 'bytes': np.bytes_, - 'string': np.str_, - 'integer': np.int64, - 'floating': np.float64, - 'decimal': np.object_, - 'empty': np.object_, -} +def get_pandas_logical_type_map(): + global _pandas_logical_type_map + + if not _pandas_logical_type_map: + _pandas_logical_type_map.update({ + 'date': 'datetime64[D]', + 'datetime': 'datetime64[ns]', + 'datetimetz': 'datetime64[ns]', + 'unicode': np.str_, + 'bytes': np.bytes_, + 'string': np.str_, + 'integer': np.int64, + 'floating': np.float64, + 'decimal': np.object_, + 'empty': np.object_, + }) + return _pandas_logical_type_map def _pandas_type_to_numpy_type(pandas_type): @@ -1046,8 +1059,9 @@ def _pandas_type_to_numpy_type(pandas_type): dtype : np.dtype The dtype that corresponds to `pandas_type`. """ + pandas_logical_type_map = get_pandas_logical_type_map() try: - return _pandas_logical_type_map[pandas_type] + return pandas_logical_type_map[pandas_type] except KeyError: if 'mixed' in pandas_type: # catching 'mixed', 'mixed-integer' and 'mixed-integer-float' diff --git a/python/pyarrow/tests/strategies.py b/python/pyarrow/tests/strategies.py index 2b8c9cd0157a5..aaa8fdbafe6cd 100644 --- a/python/pyarrow/tests/strategies.py +++ b/python/pyarrow/tests/strategies.py @@ -16,6 +16,7 @@ # under the License. import datetime +import math import sys import pytest @@ -38,10 +39,6 @@ import tzdata # noqa:F401 except ImportError: zoneinfo = None -try: - import numpy as np -except ImportError: - pass import pyarrow as pa @@ -282,7 +279,7 @@ def arrays(draw, type, size=None, nullable=True): values = draw(npst.arrays(ty.to_pandas_dtype(), shape=(size,))) # Workaround ARROW-4952: no easy way to assert array equality # in a NaN-tolerant way. - values[np.isnan(values)] = -42.0 + values[math.isnan(values)] = -42.0 return pa.array(values, type=ty) elif pa.types.is_decimal(ty): # TODO(kszucs): properly limit the precision diff --git a/python/pyarrow/tests/util.py b/python/pyarrow/tests/util.py index caf85257fe761..eeeaddb617ac0 100644 --- a/python/pyarrow/tests/util.py +++ b/python/pyarrow/tests/util.py @@ -22,10 +22,6 @@ import contextlib import decimal import gc -try: - import numpy as np -except ImportError: - pass import os import random import re @@ -113,6 +109,7 @@ def randdecimal(precision, scale): def random_ascii(length): + import numpy as np return bytes(np.random.randint(65, 123, size=length, dtype='i1')) @@ -120,22 +117,12 @@ def rands(nchars): """ Generate one random string. """ + import numpy as np RANDS_CHARS = np.array( list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) return "".join(np.random.choice(RANDS_CHARS, nchars)) -def make_dataframe(): - import pandas as pd - - N = 30 - df = pd.DataFrame( - {col: np.random.randn(N) for col in string.ascii_uppercase[:4]}, - index=pd.Index([rands(10) for _ in range(N)]) - ) - return df - - def memory_leak_check(f, metric='rss', threshold=1 << 17, iterations=10, check_interval=1): """ diff --git a/python/pyarrow/types.pxi b/python/pyarrow/types.pxi index b0f33af74379d..f06c681096bd9 100644 --- a/python/pyarrow/types.pxi +++ b/python/pyarrow/types.pxi @@ -33,45 +33,48 @@ from cython import sizeof # These are imprecise because the type (in pandas 0.x) depends on the presence # of nulls +cdef dict _pandas_type_map = {} def _get_pandas_type_map(): - cdef dict _pandas_type_map = { - _Type_NA: np.object_, # NaNs - _Type_BOOL: np.bool_, - _Type_INT8: np.int8, - _Type_INT16: np.int16, - _Type_INT32: np.int32, - _Type_INT64: np.int64, - _Type_UINT8: np.uint8, - _Type_UINT16: np.uint16, - _Type_UINT32: np.uint32, - _Type_UINT64: np.uint64, - _Type_HALF_FLOAT: np.float16, - _Type_FLOAT: np.float32, - _Type_DOUBLE: np.float64, - # Pandas does not support [D]ay, so default to [ms] for date32 - _Type_DATE32: np.dtype('datetime64[ms]'), - _Type_DATE64: np.dtype('datetime64[ms]'), - _Type_TIMESTAMP: { - 's': np.dtype('datetime64[s]'), - 'ms': np.dtype('datetime64[ms]'), - 'us': np.dtype('datetime64[us]'), - 'ns': np.dtype('datetime64[ns]'), - }, - _Type_DURATION: { - 's': np.dtype('timedelta64[s]'), - 'ms': np.dtype('timedelta64[ms]'), - 'us': np.dtype('timedelta64[us]'), - 'ns': np.dtype('timedelta64[ns]'), - }, - _Type_BINARY: np.object_, - _Type_FIXED_SIZE_BINARY: np.object_, - _Type_STRING: np.object_, - _Type_LIST: np.object_, - _Type_MAP: np.object_, - _Type_DECIMAL128: np.object_, - } + global _pandas_type_map + if not _pandas_type_map: + _pandas_type_map.update({ + _Type_NA: np.object_, # NaNs + _Type_BOOL: np.bool_, + _Type_INT8: np.int8, + _Type_INT16: np.int16, + _Type_INT32: np.int32, + _Type_INT64: np.int64, + _Type_UINT8: np.uint8, + _Type_UINT16: np.uint16, + _Type_UINT32: np.uint32, + _Type_UINT64: np.uint64, + _Type_HALF_FLOAT: np.float16, + _Type_FLOAT: np.float32, + _Type_DOUBLE: np.float64, + # Pandas does not support [D]ay, so default to [ms] for date32 + _Type_DATE32: np.dtype('datetime64[ms]'), + _Type_DATE64: np.dtype('datetime64[ms]'), + _Type_TIMESTAMP: { + 's': np.dtype('datetime64[s]'), + 'ms': np.dtype('datetime64[ms]'), + 'us': np.dtype('datetime64[us]'), + 'ns': np.dtype('datetime64[ns]'), + }, + _Type_DURATION: { + 's': np.dtype('timedelta64[s]'), + 'ms': np.dtype('timedelta64[ms]'), + 'us': np.dtype('timedelta64[us]'), + 'ns': np.dtype('timedelta64[ns]'), + }, + _Type_BINARY: np.object_, + _Type_FIXED_SIZE_BINARY: np.object_, + _Type_STRING: np.object_, + _Type_LIST: np.object_, + _Type_MAP: np.object_, + _Type_DECIMAL128: np.object_, + }) return _pandas_type_map @@ -154,14 +157,15 @@ def _is_primitive(Type type): def _get_pandas_type(arrow_type, coerce_to_ns=False): cdef Type type_id = arrow_type.id - if type_id not in _get_pandas_type_map(): + cdef dict pandas_type_map = _get_pandas_type_map() + if type_id not in pandas_type_map: return None if coerce_to_ns: # ARROW-3789: Coerce date/timestamp types to datetime64[ns] if type_id == _Type_DURATION: return np.dtype('timedelta64[ns]') return np.dtype('datetime64[ns]') - pandas_type = _get_pandas_type_map()[type_id] + pandas_type = pandas_type_map[type_id] if isinstance(pandas_type, dict): unit = getattr(arrow_type, 'unit', None) pandas_type = pandas_type.get(unit, None)