-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwitter_crawl_modelling_realtime.py
515 lines (410 loc) · 21.4 KB
/
twitter_crawl_modelling_realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# Code for extracting the data on basis of given keywords and modelling it
# Import the necessary methods from tweepy library
from tweepy.streaming import StreamListener
from tweepy import OAuthHandler
from tweepy import Stream
from wordcloud import WordCloud
from urllib3.exceptions import ProtocolError,ReadTimeoutError
import re
import json
import pandas as pd
import matplotlib
import numpy as np
import datetime as dt
import multiprocessing
from multiprocessing import Process
import sys
print("Default encoding is .. ",sys.getdefaultencoding())
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
# Variables that contains the user credentials to access Twitter API
# This is a basic listener that just prints received tweets to stdout.
count_temp=0
fig,ax = plt.subplots()
fig1,ax1 = plt.subplots()
fig2,ax2 = plt.subplots()
fig3,ax3 = plt.subplots()
fig4,ax4 = plt.subplots()
politics = ["2019 elections", "Modi" ,"Narendra Modi ", "PMO India ", "Arvind Kejriwal ", "Arun Jaitley ", "Amit Shah ", "Sushma Swaraj ", "Rajnath Singh ", "BJP ","Bhartiya Janata Party","Bhartiya Janta Party ", "Akhilesh Yadav ", "Smriti Z Irani ", "Rahul Gandhi ", "Subramanian Swamy ", "Shashi Tharoor ", "Manohar Parrikar ", "ShivrajSingh Chouhan ", "Piyush Goyal ", "AAP ","Aam Aadmi Party", "Indian National Congress ", "Lalu Prasad Yadav ", "Nitin Gadkari ", "N Chandrababu Naidu ", "Vasundhara Raje ", "Devendra Fadnavis ", "Yogi Adityanath ", "Omar Abdullah ", "Ravi Shankar Prasad ", "HMO India ", "CM Office, GoUP ", "Nandan Nilekani ", "Vijay Rupani ", "Dr Raman Singh ", "Kapil Sibal ", "Nirmala Sitharaman ", "Raveesh Kumar ", "Kalam Center ", "Aaditya Thackeray ", "Sushil Kumar Modi ", "Manish Sisodia ", "Dr. Harsh Vardhan ", "Milind Deora ", "Samajwadi Party ", "Shahnawaz Hussain ", "Vijay Kumar Singh ", "Prakash Javadekar ", "Tejashwi Yadav "]
politics1 = ['bjp', 'aap', 'bhajpaa', 'bhartiya janata party', 'aam aadmi party',
'bahujan samaj party', 'Samajwadi Party', 'AIADMK', 'DMK', 'Trinamool Congress', 'Shiv Sena',
'Nationalist Congress Party', 'Biju Janata Dal', 'Janata Dal United', 'JDU', 'Rastriya Janata Dal', 'RJD',
'JDS', 'Communist Party of India', 'Communist Party of India- Marxist', 'CPI-M', 'CPI']
choices = ['CONGRESS', 'BJP', 'AAP','#AAP','@AAP', 'BHAJPAA', 'BHARTIYA JANATA PARTY', 'AAM AADMI PARTY', 'BAHUJAN SAMAJ PARTY', 'BSP', 'SAMAJWADI PARTY', 'SP','@SP','#SP','AIADMK', 'DMK', 'TRINAMOOL CONGRESS', 'SHIV SENA', 'NATIONALIST CONGRESS PARTY', 'BIJU JANATA DAL', 'JANATA DAL UNITED', 'JDU', 'RASTRIYA JANATA DAL', 'RJD','#RJD','@RJD', 'JDS','#JDS','@JDS','COMMUNIST PARTY OF INDIA', 'COMMUNIST PARTY OF INDIA- MARXIST', 'CPI-M', 'CPI','#CPI','@CPI']
choices_party = ['INC', 'BJP', 'AAP', 'AAP', 'AAP', 'BJP', 'BJP', 'AAP', 'BSP', 'BSP', 'SP', 'SP', 'SP', 'SP', 'AIADMK', 'DMK',
'Trinamool Congress', 'Shiv Sena', 'Nationalist Congress Party', 'Biju Janata Dal',
'Janata Dal United', 'Janata Dal United', 'Rastriya Janata Dal', 'Rastriya Janata Dal', 'Rastriya Janata Dal', 'Rastriya Janata Dal', 'JDS', 'JDS', 'JDS',
'CPI', 'CPI-M', 'CPI-M', 'CPI', 'CPI', 'CPI']
choices_party1 = dict(zip(choices_party, [0 for i in range(len(choices_party))]))
choices_party_live = dict(zip(choices_party, [0 for i in range(len(choices_party))]))
pattern1 = "(?i)congress|bjp| aap |#aap|@aap|bhajpaa|bhartiya janata party|aam aadmi party|bahujan samaj party|BSP|Samajwadi Party| SP |@SP|#SP|AIADMK|DMK|Trinamool Congress|Shiv Sena|Nationalist Congress Party|Biju Janata Dal|Janata Dal United|JDU|Rastriya Janata Dal| RJD |#RJD|@RJD|JDS|#JDS|@JDS|Communist Party of India|Communist Party of India- Marxist|CPI-M| CPI |#CPI|@CPI"
politics.extend(politics1)
def locations(t):
if(t['user']['location'] != None):
if(t['user']['location'].split(',')[0].strip().upper() != 'INDIA'):
return t['user']['location'].split(',')[0].strip().upper()
else:
return None
def Geo_Party(query):
party = re.findall(pattern1,query)
ind = []
for i in party:
ind.append(choices_party[choices.index(i.strip().upper())])
ind = np.unique(np.array(ind))
return ind
def Hashtags_tweets(time_int):
#count_var = 0
a = tweets_twi['time']
time_min = []
time_min_time = []
x_temp=1
while(x_temp <= len(a)):
if(not a[len(a) - x_temp] != a[len(a) - x_temp]):
start_time = a[len(a) - x_temp].split()
del(start_time[4])
start_time[4] = start_time[4][2:]
start_time = " ".join(start_time)
time_min.append(tweets_twi['text'][len(a) - x_temp])
start_dt = dt.datetime.strptime(start_time, '%a %b %d %H:%M:%S %y')
time_min_time.append(start_dt)
break;
else:
time_min.append(tweets_twi['text'][len(a) - x_temp])
time_min_time.append(tweets_twi['time'][len(a) - x_temp])
x_temp=x_temp+1
for i in range(len(a)-x_temp-1,-1,-1):
#count_var = count_var + 1
#print(count_var," p1")
if(not a[i]!=a[i]):
a[i]=a[i].split()
if(len(a[i])==6):
del(a[i][4])
a[i][4] = a[i][4][2:]
a[i] = " ".join(a[i])
a_dt = dt.datetime.strptime(a[i],'%a %b %d %H:%M:%S %y')
diff = start_dt - a_dt
diff = diff.seconds
if(diff/60 > time_int):
break;
else:
time_min.append(tweets_twi['text'][i])
start_dt = max(start_dt, a_dt)
time_min_time.append(a_dt)
else:
time_min.append(tweets_twi['text'][i])
time_min_time.append(tweets_twi['time'][i])
queue_local.put([time_min,time_min_time])
return time_min,time_min_time
def Hastag_extract(tweets_array):
hashtag=[]
for i in tweets_array:
try:
ht = re.findall("#[\w]*", i.encode('ascii','ignore').decode('ascii'))
hashtag.extend(ht)
except Exception:
pass
return hashtag
def Word_cloud(all_words):
all_words = " ".join(all_words)
word_cloud = WordCloud(width=800,height=500,random_state=21,max_font_size=110).generate(all_words)
plt.imshow(word_cloud,interpolation='bilinear')
plt.axis('off')
def Stats_live(time_int):
global start_tweet_time,end_tweet_time
#count_var = 0
a = tweets_twi['time']
tweets_twi_live = pd.DataFrame(columns=['time','username','text','lang','country','user_loc'])
x_temp=1
while(x_temp <= len(a)):
if(not a[len(a) - x_temp] != a[len(a) - x_temp]):
start_time = a[len(a) - x_temp].split()
del(start_time[4])
start_time[4] = start_time[4][2:]
start_time = " ".join(start_time)
tweets_twi_live = tweets_twi.loc[len(a) - x_temp:len(a) - x_temp]
start_dt = dt.datetime.strptime(start_time, '%a %b %d %H:%M:%S %y')
break;
else:
tweets_twi_live = tweets_twi.loc[len(a) - x_temp:len(a) - x_temp]
x_temp=x_temp+1
for i in range(len(a)-x_temp-1,-1,-1):
#count_var = count_var + 1
#print(count_var," p2 ")
if(not a[i]!=a[i]):
a[i]=a[i].split()
if(len(a[i])==6):
del(a[i][4])
a[i][4] = a[i][4][2:]
a[i] = " ".join(a[i])
a_dt = dt.datetime.strptime(a[i],'%a %b %d %H:%M:%S %y')
diff = start_dt - a_dt
diff = diff.seconds
if(diff/60 > time_int):
break;
else:
tweets_twi_live = tweets_twi_live.append(tweets_twi.loc[i:i],ignore_index=True)
start_dt = max(start_dt, a_dt)
end_tweet_time = a_dt
start_tweet_time = start_dt
else:
tweets_twi_live = tweets_twi_live.append(tweets_twi.loc[i:i],ignore_index=True)
queue_local.put(tweets_twi_live)
queue_global.put([start_tweet_time,end_tweet_time])
return tweets_twi_live
def Append_data(tweets_twitter,tweet_data):
if (tweet_data['place'] != None):
tweets_twitter = tweets_twitter.append({'country': tweet_data['place']['country'].upper(),'time': tweet_data['created_at'],'text': tweet_data['text'],'lang': tweet_data['lang'],'username': tweet_data['user']['name'],'user_loc': locations(tweet_data)}, ignore_index=True)
else:
tweets_twitter = tweets_twitter.append({'country': None,'time': tweet_data['created_at'],'text': tweet_data['text'],'lang': tweet_data['lang'],'username': tweet_data['user']['name'],'user_loc': locations(tweet_data)}, ignore_index=True)
return tweets_twitter
def Append_data_begin(tweets_twitter,tweet_data):
s = pd.DataFrame()
if (tweet_data['place'] != None):
s = s.append({'country': tweet_data['place']['country'].upper(),'time': tweet_data['created_at'],'text': tweet_data['text'],'lang': tweet_data['lang'],'username': tweet_data['user']['name'],'user_loc': locations(tweet_data)}, ignore_index=True)
else:
s = s.append({'country': None,'time': tweet_data['created_at'],'text': tweet_data['text'],'lang': tweet_data['lang'],'username': tweet_data['user']['name'],'user_loc': locations(tweet_data)}, ignore_index=True)
tweets_twitter = pd.concat([s,tweets_twitter],ignore_index=True,sort=False)
return tweets_twitter
def Modelling_data(tweets_twitter,ax,ax1,ax2,ax3,title1,title2,title3,title4):
tweets_by_lang = tweets_twitter['lang'].value_counts()
if (len(tweets_by_lang) >= 3):
ax.tick_params(axis='x', labelsize=15)
ax.tick_params(axis='y', labelsize=10)
ax.set_xlabel('Languages', fontsize=15)
ax.set_ylabel('Number of tweets', fontsize=15)
ax.set_title(title1, fontsize=15, fontweight='bold')
tweets_by_lang[:3].plot(ax=ax, kind='bar', color='green')
f = open('/Users/anubhavjain/Desktop/Contents_twitter.txt', 'w+')
f.write("Tweet Count till now .. \n")
f.write(str(tweet_count))
f.write("\n\n"+ title1 +"\n")
f.writelines(str(tweets_by_lang[:3]).encode('ascii','ignore').decode('ascii'))
f.close()
tweets_by_country = tweets_twitter['country'].value_counts()
if (len(tweets_by_country) >= 5):
ax1.tick_params(axis='x', labelsize=15)
ax1.tick_params(axis='y', labelsize=10)
ax1.set_xlabel('Countries', fontsize=15)
ax1.set_ylabel('Number of tweets', fontsize=15)
ax1.set_title(title2, fontsize=15, fontweight='bold')
tweets_by_country[:5].plot(ax=ax1, kind='bar', color='blue')
f = open('/Users/anubhavjain/Desktop/Contents_twitter.txt', 'a+')
f.write("\n\n"+ title2 +"\n")
f.writelines(str(tweets_by_country[:5]).encode('ascii','ignore').decode('ascii'))
f.close()
tweets_by_loc = tweets_twitter['user_loc'].value_counts()
if (len(tweets_by_loc) >= 5):
ax2.tick_params(axis='x', labelsize=15)
ax2.tick_params(axis='y', labelsize=10)
ax2.set_xlabel('Locations', fontsize=15)
ax2.set_ylabel('Number of tweets', fontsize=15)
ax2.set_title(title3, fontsize=15, fontweight='bold')
tweets_by_loc[:5].plot(ax=ax2, kind='bar', color='blue')
f = open('/Users/anubhavjain/Desktop/Contents_twitter.txt', 'a+')
f.write("\n\n"+ title3 +"\n")
f.writelines(str(tweets_by_loc[:5]).encode('ascii','ignore').decode('ascii'))
f.close()
tweets_by_username = tweets_twitter['username'].value_counts()
if (len(tweets_by_username) >= 5):
ax3.tick_params(axis='x', labelsize=15)
ax3.tick_params(axis='y', labelsize=10)
ax3.set_xlabel('UserName', fontsize=15)
ax3.set_ylabel('Number of tweets', fontsize=15)
ax3.set_title(title4, fontsize=15, fontweight='bold')
tweets_by_username[:5].plot(ax=ax3, kind='bar', color='blue')
f = open('/Users/anubhavjain/Desktop/Contents_twitter.txt', 'a+')
f.write("\n\n"+ title4 +"\n")
f.writelines(str(tweets_by_username[:5]).encode('ascii','ignore').decode('ascii'))
f.close()
class StdOutListener(StreamListener):
def on_data(self, data):
global tweet_count
global tweets_twi
global count_temp
global hash_10,time_10,tweets_twi_10
global ax,ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9
global start_tweet_time,end_tweet_time
global decision
global X
file.write(data)
tweet = json.loads(data)
tweet_count = tweet_count + 1
if(count_temp == 0):
print("The following are the features of the data/tweets")
for key in tweet.keys():
print(key)
print("\n")
Append_data(tweets_twi,tweet)
key_arr = Geo_Party(tweet['text'])
for i in key_arr:
choices_party1[i] += 1
Modelling_data(tweets_twi,ax,ax1,ax2,ax3,'Top 3 Languages','Top 5 Countries','Top 5 locations','Top 5 TwitterUsers')
party = dict(sorted(choices_party1.items(), key=lambda x: x[1], reverse=True)[:5])
ax4.tick_params(axis='x', labelsize=15)
ax4.tick_params(axis='y', labelsize=10)
ax4.set_xlabel('Parties', fontsize=15)
ax4.set_ylabel('Count', fontsize=15)
ax4.set_title('Top 5 Parties', fontsize=15, fontweight='bold')
ax4.bar(party.keys(), party.values(), align='center', color='yellow')
### Many tweets are being retweeted and thus appearing many a times in the dataframe.
# tweets_by_text = tweets_twi['text'].value_counts()
# print(tweets_by_text)
if(decision == 'Y'):
if(not tweet['created_at'] != tweet['created_at']):
tweet_time = tweet['created_at'].split()
del(tweet_time[4])
tweet_time[4] = tweet_time[4][2:]
start_time = " ".join(tweet_time)
tweet_time = dt.datetime.strptime(start_time, '%a %b %d %H:%M:%S %y')
difference_time = start_tweet_time - end_tweet_time
difference_time = difference_time.seconds
if (tweet_time == start_tweet_time or difference_time/60 < X):
start_tweet_time = max(tweet_time,start_tweet_time)
hash_10.insert(0, tweet['text'])
time_10.insert(0, tweet_time)
Append_data_begin(tweets_twi_10,tweet)
key_arr = Geo_Party(tweet['text'])
for i in key_arr:
choices_party_live[i] += 1
else:
start_tweet_time = max(tweet_time,start_tweet_time)
hash_10.insert(0, tweet['text'])
time_10.insert(0, tweet_time)
Append_data_begin(tweets_twi_10, tweet)
key_arr = Geo_Party(tweet['text'])
for i in key_arr:
choices_party_live[i] += 1
while(True):
if(time_10[len(time_10) - 1] != time_10[len(time_10) - 1]):
time_10.pop()
tweets_twi_10 = tweets_twi_10.loc[:len(tweets_twi_10)-2,:]
key_del = Geo_Party(hash_10.pop())
for j in key_del:
choices_party_live[j] -= 1
elif((start_tweet_time - time_10[len(time_10) - 1]).seconds / 60 > X):
time_10.pop()
tweets_twi_10 = tweets_twi_10.loc[:len(tweets_twi_10)-2,:]
key_del = Geo_Party(hash_10.pop())
for j in key_del:
choices_party_live[j] -= 1
else:
end_tweet_time = time_10[len(time_10) - 1]
break;
else:
hash_10.insert(0, tweet['text'])
time_10.insert(0, tweet['created_at'])
Append_data_begin(tweets_twi_10, tweet)
key_arr = Geo_Party(tweet['text'])
for i in key_arr:
choices_party_live[i] += 1
#print(start_tweet_time, end_tweet_time, start_tweet_time - end_tweet_time)
if(count_temp % (10*X) == 0):
print("\nTweet Count till now .. \t")
print(tweet_count, "\n\n")
if(decision == 'Y'):
"""tweets_twi_10 = Stats_live(X)
Modelling_data(tweets_twi_10, ax5, ax6, ax7, ax8, 'Top 3 Languages recently', 'Top 5 Countries recently','Top 5 locations recently', 'Top 5 TwitterUsers recently')
hash_10,time_10 = Hashtags_tweets(X)
for i in hash_10:
key_arr = Geo_Party(str(i))
for j in key_arr:
choices_party1[j] += 1
print(start_tweet_time,end_tweet_time,start_tweet_time-end_tweet_time)"""
Modelling_data(tweets_twi_10, ax5, ax6, ax7, ax8, 'Top 3 Languages recently','Top 5 Countries recently', 'Top 5 locations recently', 'Top 5 TwitterUsers recently')
Word_cloud(Hastag_extract(hash_10))
print(start_tweet_time, end_tweet_time, start_tweet_time - end_tweet_time)
party1 = dict(sorted(choices_party_live.items(), key=lambda x: x[1], reverse=True)[:5])
ax9.tick_params(axis='x', labelsize=15)
ax9.tick_params(axis='y', labelsize=10)
ax9.set_xlabel('Parties', fontsize=15)
ax9.set_ylabel('Count', fontsize=15)
ax9.set_title('Top 5 Parties in last '+ str(X) +' mins ', fontsize=15, fontweight='bold')
ax9.bar(party1.keys(), party1.values(), align='center', color='yellow')
plt.pause(0.00001)
count_temp = count_temp + 1
return True
def on_error(self, status):
print(status)
if __name__ == '__main__':
# This handles Twitter authetification and the connection to Twitter Streaming API
tweets_twi = pd.DataFrame()
tweet_count = 0
tweets_data=[]
start_tweet_time = -1
end_tweet_time = -1
f_temp = open('/Users/anubhavjain/Desktop/twitter_data_1.txt', 'r')
for line in f_temp:
try:
tweet1 = json.loads(line)
tweets_data.append(tweet1)
except(Exception):
continue
f_temp.close()
tweets_data = np.array(tweets_data)
tweet_count=len(tweets_data)
### to write any Random tweet from the dataset
if(len(tweets_data)>0):
f = open('/Users/anubhavjain/Desktop/Random_tweet_streaming.txt', 'w+')
f.write("Printing random tweet along with its features ....\n\n")
for i in tweets_data[np.random.randint(len(tweets_data),size=None)].items():
str_temp = str(i) + "\n\n"
str_temp = str_temp.encode('ascii','ignore').decode('ascii')
f.write(str_temp)
f.close()
tweets_twi['time'] = list(map(lambda t: t['created_at'], tweets_data))
tweets_twi['text'] = list(map(lambda t: t['text'], tweets_data))
tweets_twi['lang'] = list(map(lambda t: t['lang'], tweets_data))
tweets_twi['country'] = list(map(lambda t: t['place']['country'].upper() if (t['place'] != None) else None,tweets_data))
list_temp = []
for i in tweets_data:
list_temp.append(locations(i))
tweets_twi['user_loc'] = list_temp
tweets_twi['username'] = list(map(lambda t: t['user']['name'], tweets_data))
tweets_twi['user_loc'] = tweets_twi['user_loc'].replace('USA','UNITED STATES')
tweets_twi['user_loc'] = tweets_twi['user_loc'].replace('BOMBAY','MUMBAI')
tweets_twi['user_loc'] = tweets_twi['user_loc'].replace('BANGALORE','BENGALURU')
for i in tweets_data:
key_arr = Geo_Party(i['text'])
for j in key_arr:
choices_party1[j] += 1
queue_local = multiprocessing.Queue()
queue_global = multiprocessing.Queue()
print("Do you want to see the Statistics for last X minutes Y/N ...")
decision = input()
decision = decision.upper()
if(decision == 'Y'):
print("Enter the value of X")
X = int(input())
p1 = Process(target=Hashtags_tweets,args=(X,))
p2 = Process(target=Stats_live,args=(X,))
p1.start()
p2.start()
#p1.join()
#p2.join()
hash_10,time_10 = queue_local.get()
tweets_twi_10 = queue_local.get()
start_tweet_time,end_tweet_time = queue_global.get()
print("No. of tweets in last " +str(X)+ " mins",len(tweets_twi_10))
for i in np.array(tweets_twi_10['text']):
key_arr = Geo_Party(str(i))
for j in key_arr:
choices_party_live[j] += 1
fig5, ax5 = plt.subplots()
fig6, ax6 = plt.subplots()
fig7, ax7 = plt.subplots()
fig8, ax8 = plt.subplots()
fig9, ax9 = plt.subplots()
plt.figure(figsize=(10, 7))
file = open('/Users/anubhavjain/Desktop/twitter_data_1.txt', 'a+')
l = StdOutListener()
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
stream = Stream(auth, l)
# This line filter Twitter Streams to capture data by the given keywords and on basis of the given location as india and languages as hindi and english:
#stream.filter(follow=["207809313"])
while (True):
try:
stream.filter(track=politics, locations=[68.1766451354, 7.96553477623, 97.4025614766, 35.4940095078],
languages=['en', 'hi', 'tl'], filter_level='low')
except (ProtocolError, AttributeError,ReadTimeoutError):
continue;