forked from evie/gortp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpackets.go
859 lines (742 loc) · 28.5 KB
/
packets.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
// Copyright (C) 2011 Werner Dittmann
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Authors: Werner Dittmann <[email protected]>
//
package rtp
import (
"encoding/binary"
"encoding/hex"
"fmt"
)
const (
defaultBufferSize = 1200
freeListLengthRtp = 10
freeListLengthRtcp = 5
rtpHeaderLength = 12
rtcpHeaderLength = 4
rtcpSsrcLength = 4
padToMultipleOf = 4
)
const (
markerPtOffset = 1
packetTypeOffset = 1
lengthOffset = 2
sequenceOffset = 2
timestampOffset = sequenceOffset + 2
ssrcOffsetRtp = timestampOffset + 4
ssrcOffsetRtcp = sequenceOffset + 2
)
const (
version2Bit = 0x80
versionMask = 0xc0
extensionBit = 0x10
paddingBit = 0x20
markerBit = 0x80
ccMask = 0x0f
ptMask = 0x7f
countMask = 0x1f
)
// For full reference of registered RTP parameters refer to:
// http://www.iana.org/assignments/rtp-parameters
// RTCP packet types
const (
RtcpSR = 200 // SR sender report [RFC3550]
RtcpRR = 201 // RR receiver report [RFC3550]
RtcpSdes = 202 // SDES source description [RFC3550]
RtcpBye = 203 // BYE goodbye [RFC3550]
RtcpApp = 204 // APP application-defined [RFC3550]
RtcpRtpfb = 205 // RTPFB Generic RTP Feedback [RFC4585]
RtcpPsfb = 206 // PSFB Payload-specific [RFC4585]
RtcpXr = 207 // XR extended report [RFC3611]
)
// RTCP SDES item types
const (
SdesEnd = iota // END end of SDES list [RFC3550]
SdesCname // CNAME canonical name [RFC3550]
SdesName // NAME user name [RFC3550]
SdesEmail // EMAIL user's electronic mail address [RFC3550]
SdesPhone // PHONE user's phone number [RFC3550]
SdesLoc // LOC geographic user location [RFC3550]
SdesTool // TOOL name of application or tool [RFC3550]
SdesNote // NOTE notice about the source [RFC3550]
SdesPriv // PRIV private extensions [RFC3550]
SdesH323Caddr // H323-CADDR H.323 callable address [Kumar]
sdesMax
)
// Length of fixed report blocks in bytes
const (
senderInfoLen = 20
reportBlockLen = 24
)
// nullArray is what it's names says: a long array filled with zeros.
// used to clear (fill with zeros) arrays/slices inside a buffer by copying.
var nullArray [1200]byte
type RawPacket struct {
inUse int
padTo int
isFree bool
fromAddr Address
buffer []byte
}
// Buffer returns the internal buffer in raw format.
// Usually only other Transports use the buffer in raw format, for example to encrypt
// or decrypt the buffer.
// Always call Buffer() just before the the buffer is actually used because several packet
// handling functions may re-allocate buffers.
func (raw *RawPacket) Buffer() []byte {
return raw.buffer
}
// InUse returns the number of valid bytes in the packet buffer.
// Several function modify the inUse variable, for example when copying payload or setting extensions
// in the RTP packet. Thus "buffer[0:inUse]" is the slice inside the buffer that will be sent or
// was received.
func (rp *RawPacket) InUse() int {
return rp.inUse
}
// *** RTP specific functions start here ***
// RTP packet type to define RTP specific functions
type DataPacket struct {
RawPacket
payloadLength int16
}
var freeListRtp = make(chan *DataPacket, freeListLengthRtp)
func newDataPacket() (rp *DataPacket) {
// Grab a packet if available; allocate if not.
select {
case rp = <-freeListRtp: // Got one; nothing more to do.
default:
rp = new(DataPacket) // None free, so allocate a new one.
rp.buffer = make([]byte, defaultBufferSize)
}
rp.buffer[0] = version2Bit // RTP: V = 2, P, X, CC = 0
rp.inUse = rtpHeaderLength
rp.isFree = false
return
}
// FreePacket returns the packet to the free RTP list.
// A packet marked as free is ignored, thus calling FreePacket multiple times for the same
// packet is possible.
func (rp *DataPacket) FreePacket() {
if rp.isFree {
return
}
rp.buffer[0] = 0 // invalidate RTP packet
rp.inUse = 0
rp.padTo = 0
rp.fromAddr.DataPort = 0
rp.fromAddr.IpAddr = nil
rp.isFree = true
select {
case freeListRtp <- rp: // Packet on free list; nothing more to do.
default: // Free list full, just carry on.
}
}
// CsrcCount return the number of CSRC values in this packet
func (rp *DataPacket) CsrcCount() uint8 {
return rp.buffer[0] & ccMask
}
// SetCsrcList takes the CSRC in this list, converts from host to network order and sets into the RTP packet.
// The new CSRC list replaces an existing CSCR list. The list can have a maximum length of 16 CSCR values,
// if the list contains more values the method leaves the RTP packet untouched.
func (rp *DataPacket) SetCsrcList(csrc []uint32) {
if len(csrc) > 16 {
return
}
// For this method: content is any data after an existing (or new) CSRC list. This
// includes RTP extension data and payload.
offsetOld := int(rp.CsrcCount()*4 + rtpHeaderLength) // offset to old content
offsetNew := len(csrc)*4 + rtpHeaderLength // offset to new content
newInUse := offsetNew + rp.inUse - offsetOld
if newInUse > cap(rp.buffer) {
return
}
tmpRp := newDataPacket() // get a new packet first
newBuf := tmpRp.buffer // and get its buffer
copy(newBuf, rp.buffer[0:rtpHeaderLength]) // copy fixed header
copy(newBuf[offsetNew:], rp.buffer[offsetOld:rp.inUse]) // copy over old content
for i := 0; i < len(csrc); i++ {
binary.BigEndian.PutUint32(newBuf[rtpHeaderLength+i*4:], csrc[i]) // CSCR in network order
}
tmpRp.buffer = rp.buffer // switch buffers
rp.buffer = newBuf
tmpRp.FreePacket() // free temporary RTP packet
rp.buffer[0] &^= ccMask // clear old length
rp.buffer[0] |= byte(len(csrc) & ccMask)
rp.inUse = newInUse
}
// CsrcList returns the list of CSRC values as uint32 slice in host horder
func (rp *DataPacket) CsrcList() (list []uint32) {
list = make([]uint32, rp.CsrcCount())
for i := 0; i < len(list); i++ {
list[i] = binary.BigEndian.Uint32(rp.buffer[rtpHeaderLength+i*4:])
}
return
}
// SetExtension takes a byte slice and set it as extension into the RTP packet.
// The byte slice must conform to one of the formats specified in RFC 3550 or RFC 5258, thus
// the length must be a multiple of uint32 (4) and the length field must be in the 3rd and 4th
// byte (uint16) and its value must adhere to RFC 3550 / RFC 5258.
func (rp *DataPacket) SetExtension(ext []byte) {
if (len(ext) % 4) != 0 {
return
}
l := 0
if len(ext) > 0 {
l = int((binary.BigEndian.Uint16(ext[2:]) + 1) * 4)
}
if l != len(ext) {
return
}
// For this method: content is any data after an existing (or new) Extension area. This
// is the payload.
offsetExt := int(rp.CsrcCount()*4 + rtpHeaderLength) // offset to Extension
offsetOld := int(rp.CsrcCount()*4 + rtpHeaderLength) // offset to old content
if rp.ExtensionBit() {
offsetOld += rp.ExtensionLength()
}
offsetNew := offsetExt + l // offset to new content
newInUse := rp.inUse + l - (offsetOld - offsetExt)
if newInUse > cap(rp.buffer) {
return
}
tmpRp := newDataPacket() // get a new packet first
newBuf := tmpRp.buffer // and get its buffer
copy(newBuf, rp.buffer[0:rtpHeaderLength]) // copy fixed header
copy(newBuf[offsetExt:], ext) // copy new extension
copy(newBuf[offsetNew:], rp.buffer[offsetOld:rp.inUse]) // copy over old content
tmpRp.buffer = rp.buffer // switch buffers
rp.buffer = newBuf
tmpRp.FreePacket() // free temporary RTP packet
if l == 0 {
rp.buffer[0] &^= extensionBit
} else {
rp.buffer[0] |= extensionBit
}
rp.inUse = newInUse
}
// Extension returns the byte slice of the RTP packet extension part, if not extension available it returns nil.
// This is not a copy of the extension part but the slice points into the real RTP packet buffer.
func (rp *DataPacket) Extension() []byte {
if !rp.ExtensionBit() {
return nil
}
offset := int(rp.CsrcCount()*4 + rtpHeaderLength)
return rp.buffer[offset : offset+rp.ExtensionLength()]
}
// Ssrc returns the SSRC as uint32 in host order.
func (rp *DataPacket) Ssrc() uint32 {
return binary.BigEndian.Uint32(rp.buffer[ssrcOffsetRtp:])
}
// SetSsrc converts SSRC from host order into network order and stores it in the RTP packet.
func (rp *DataPacket) SetSsrc(ssrc uint32) {
binary.BigEndian.PutUint32(rp.buffer[ssrcOffsetRtp:], ssrc)
}
// Timestamp returns the Timestamp as uint32 in host order.
func (rp *DataPacket) Timestamp() uint32 {
return binary.BigEndian.Uint32(rp.buffer[timestampOffset:])
}
// SetTimestamp converts timestamp from host order into network order and stores it in the RTP packet.
func (rp *DataPacket) SetTimestamp(timestamp uint32) {
binary.BigEndian.PutUint32(rp.buffer[timestampOffset:], timestamp)
}
// SetMarker set or resets the Marker bit.
// If the parameter m is true the methods sets the Marker bit, resets it otherweise.
func (rp *DataPacket) SetMarker(m bool) {
if m {
rp.buffer[markerPtOffset] |= markerBit
} else {
rp.buffer[markerPtOffset] &^= markerBit
}
}
// Marker returns the state of the Marker bit.
// If the Marker bit is set the method return true, otherwise it returns false
func (rp *DataPacket) Marker() bool {
return (rp.buffer[markerPtOffset] & markerBit) == markerBit
}
// SetPadding set or resets the padding bit.
// If the parameter p is true the methods sets the Padding bit, resets it otherweise.
// If parameter p is true and padTo is zero, then this method sets pads the whole
// RTP packet to a multiple of 4, otherwise the given value is used which must be
// greater than 1.
//
// NOTE: padding is only done when adding payload to the packet, thus if an application
// required padding then seeting the payload should be the last step in RTP packet creation
func (rp *DataPacket) SetPadding(p bool, padTo int) {
if padTo == 0 {
padTo = padToMultipleOf
}
if p {
rp.buffer[0] |= paddingBit
rp.padTo = padTo
} else {
rp.buffer[0] &^= paddingBit
rp.padTo = 0
}
}
// Padding returns the state of the Padding bit.
// If the Padding bit is set the method return true, otherwise it returns false
func (rp *DataPacket) Padding() bool {
return (rp.buffer[0] & paddingBit) == paddingBit
}
// SetPayloadType sets a new payload type value in the RTP packet header.
func (rp *DataPacket) SetPayloadType(pt byte) {
rp.buffer[markerPtOffset] &^= ptMask // first: clear old type
rp.buffer[markerPtOffset] |= (pt & ptMask)
}
// PayloadType return the payload type value from RTP packet header.
func (rp *DataPacket) PayloadType() byte {
return rp.buffer[markerPtOffset] & ptMask
}
// SetSequence converts the sequence from host order into network order and stores it in the RTP packet header.
func (rp *DataPacket) SetSequence(seq uint16) {
binary.BigEndian.PutUint16(rp.buffer[sequenceOffset:], seq)
}
// Sequence returns the sequence number as uint16 in host order.
func (rp *DataPacket) Sequence() uint16 {
return binary.BigEndian.Uint16(rp.buffer[sequenceOffset:])
}
// ExtensionBit returns true if the Extension bit is set in the header, false otherwise.
func (rp *DataPacket) ExtensionBit() bool {
return (rp.buffer[0] & extensionBit) == extensionBit
}
// ExtensionLength returns the full length in bytes of RTP packet extension (including the main extension header).
func (rp *DataPacket) ExtensionLength() (length int) {
if !rp.ExtensionBit() {
return 0
}
offset := int16(rp.CsrcCount()*4 + rtpHeaderLength) // offset to extension header 32bit word
offset += 2
length = int(binary.BigEndian.Uint16(rp.buffer[offset:])) + 1 // +1 for the main extension header word
length *= 4
return
}
// Payload returns the byte slice of the payload after removing length of possible padding.
//
// The slice is not a copy of the payload but the slice points into the real RTP packet buffer.
func (rp *DataPacket) Payload() []byte {
payOffset := int(rp.CsrcCount()*4+rtpHeaderLength) + rp.ExtensionLength()
pad := 0
if rp.Padding() {
pad = int(rp.buffer[rp.inUse-1])
}
return rp.buffer[payOffset : rp.inUse-pad]
}
// SetPayload copies the contents of payload byte slice into the RTP packet, and replaces an existing payload.
//
// Only SetPayload honors the Padding bit and pads the RTP packet to a multiple of the value specified
// in SetPadding. SetPayload performs padding only if the payload length is greate zero. A payload of
// zero length removes an existing payload including a possible padding
func (rp *DataPacket) SetPayload(payload []byte) {
payOffset := int(rp.CsrcCount()*4+rtpHeaderLength) + rp.ExtensionLength()
payloadLenOld := rp.inUse - payOffset
pad := 0
padOffset := 0
if rp.Padding() {
// adjust payloadLenOld to honor padding length
if payloadLenOld > rp.padTo {
payloadLenOld += int(rp.buffer[rp.inUse])
}
// Reduce length of inUse by length of old content, thus remove old content
rp.inUse -= payloadLenOld
// Compute new padding length
pad = (len(payload) + rp.inUse) % rp.padTo
if pad == 0 {
pad = rp.padTo
}
} else {
// Reduce length of inUse by length of old content, thus remove old content
rp.inUse -= payloadLenOld
}
if (payOffset + len(payload) + pad) > cap(rp.buffer) {
return
}
rp.inUse += copy(rp.buffer[payOffset:], payload)
if rp.Padding() && len(payload) > 0 {
padOffset = payOffset + len(payload)
for i := 0; i < pad-1; i++ {
rp.buffer[padOffset] = 0
padOffset++
}
rp.buffer[padOffset] = byte(pad)
rp.inUse += pad
}
return
}
func (rp *DataPacket) IsValid() bool {
if (rp.buffer[0] & versionMask) != version2Bit {
return false
}
if PayloadFormatMap[int(rp.PayloadType())] == nil {
return false
}
return true
}
// Print outputs a formatted dump of the RTP packet.
func (rp *DataPacket) Print(label string) {
fmt.Printf("RTP Packet at: %s\n", label)
fmt.Printf(" fixed header dump: %s\n", hex.EncodeToString(rp.buffer[0:rtpHeaderLength]))
fmt.Printf(" Version: %d\n", (rp.buffer[0]&0xc0)>>6)
fmt.Printf(" Padding: %t\n", rp.Padding())
fmt.Printf(" Extension: %t\n", rp.ExtensionBit())
fmt.Printf(" Contributing SRCs: %d\n", rp.CsrcCount())
fmt.Printf(" Marker: %t\n", rp.Marker())
fmt.Printf(" Payload type: %d (0x%x)\n", rp.PayloadType(), rp.PayloadType())
fmt.Printf(" Sequence number: %d (0x%x)\n", rp.Sequence(), rp.Sequence())
fmt.Printf(" Timestamp: %d (0x%x)\n", rp.Timestamp(), rp.Timestamp())
fmt.Printf(" SSRC: %d (0x%x)\n", rp.Ssrc(), rp.Ssrc())
if rp.CsrcCount() > 0 {
cscr := rp.CsrcList()
fmt.Printf(" CSRC list:\n")
for i, v := range cscr {
fmt.Printf(" %d: %d (0x%x)\n", i, v, v)
}
}
if rp.ExtensionBit() {
extLen := rp.ExtensionLength()
fmt.Printf(" Extentsion length: %d\n", extLen)
offsetExt := rtpHeaderLength + int(rp.CsrcCount()*4)
fmt.Printf(" extension: %s\n", hex.EncodeToString(rp.buffer[offsetExt:offsetExt+extLen]))
}
payOffset := rtpHeaderLength + int(rp.CsrcCount()*4) + rp.ExtensionLength()
fmt.Printf(" payload: %s\n", hex.EncodeToString(rp.buffer[payOffset:rp.inUse]))
}
// *** RTCP specific funtions start here ***
// RTCP packet type to define RTCP specific functions.
type CtrlPacket struct {
RawPacket
}
var freeListRtcp = make(chan *CtrlPacket, freeListLengthRtcp)
// newCtrlPacket gets a raw packet, initializes the first fixed RTCP header, advances inUse to point after new fixed header.
func newCtrlPacket() (rp *CtrlPacket, offset int) {
// Grab a packet if available; allocate if not.
select {
case rp = <-freeListRtcp: // Got one; nothing more to do.
default:
rp = new(CtrlPacket) // None free, so allocate a new one.
rp.buffer = make([]byte, defaultBufferSize)
}
rp.buffer[0] = version2Bit // RTCP: V = 2, P, RC = 0
rp.inUse = rtcpHeaderLength
offset = rtcpHeaderLength
return
}
// addHeaderCtrl adds a new fixed RTCP header field into the compound, initializes, advances inUse to point after new fixed header.
func (rp *CtrlPacket) addHeaderCtrl(offset int) int {
rp.buffer[offset] = version2Bit // RTCP: V = 2, P, RC = 0
rp.inUse += 4
return rp.inUse
}
// addHeaderSsrc adds a SSRC header into the compound (usually after fixed header field), advances inUse to point after SSRC.
func (rp *CtrlPacket) addHeaderSsrc(offset int, ssrc uint32) int {
binary.BigEndian.PutUint32(rp.buffer[offset:], ssrc)
rp.inUse += 4
return rp.inUse
}
func (rp *CtrlPacket) FreePacket() {
if rp.isFree {
return
}
rp.buffer[0] = 0 // invalidate RTCP packet
rp.inUse = 0
rp.padTo = 0
rp.fromAddr.CtrlPort = 0
rp.fromAddr.IpAddr = nil
rp.isFree = true
select {
case freeListRtcp <- rp: // Packet on free list; nothing more to do.
default: // Free list full, just carry on.
}
}
// SetSsrc converts SSRC from host order into network order and stores it in the RTCP as packet sender.
func (rp *CtrlPacket) SetSsrc(offset int, ssrc uint32) {
binary.BigEndian.PutUint32(rp.buffer[offset+ssrcOffsetRtcp:], ssrc)
}
// Ssrc returns the SSRC of the packet sender as uint32 in host order.
func (rp *CtrlPacket) Ssrc(offset int) (ssrc uint32) {
ssrc = binary.BigEndian.Uint32(rp.buffer[offset+ssrcOffsetRtcp:])
return
}
// Count returns the counter bits in the word defined by offset.
// Offset points to the first byte of the header word of a RTCP packet.
func (rp *CtrlPacket) Count(offset int) int {
return int(rp.buffer[offset] & countMask)
}
// SetCount returns the counter bits in the word defined by offset.
// Offset points to the first byte of the header word of a RTCP packet.
func (rp *CtrlPacket) SetCount(offset, count int) {
rp.buffer[offset] |= byte(count & countMask)
}
// SetLength converts the length from host order into network order and stores it in the RTCP packet header.
// Offset points to the first byte of the header word of a RTCP packet.
func (rp *CtrlPacket) SetLength(offset int, length uint16) {
binary.BigEndian.PutUint16(rp.buffer[offset+lengthOffset:], length)
}
// Length returns the length as uint16 in host order.
// Offset points to the first byte of the header word of a RTCP packet.
func (rp *CtrlPacket) Length(offset int) uint16 {
return binary.BigEndian.Uint16(rp.buffer[offset+lengthOffset:])
}
// Type returns the report type stored in the header word.
// Offset points to the first byte of the header word of a RTCP packet.
func (rp *CtrlPacket) Type(offset int) int {
return int(rp.buffer[offset+packetTypeOffset])
}
// SetType sets the report type in the header word.
// Offset points to the first byte of the header word of a RTCP packet.
func (rp *CtrlPacket) SetType(offset, packetType int) {
rp.buffer[offset+packetTypeOffset] = byte(packetType)
}
type senderInfo []byte
type recvReport []byte
type sdesChunk []byte
type byeData []byte
/*
* Functions to fill/access a sender info structure
*/
// newSenderInfo returns a senderInfo which is positioned at the current inUse offet and advances inUse to point after senderInfo.
func (rp *CtrlPacket) newSenderInfo() (info senderInfo, offset int) {
info = rp.toSenderInfo(rp.inUse)
rp.inUse += len(info)
offset = rp.inUse
return
}
// toSenderInfo returns the senderInfo byte slice inside the RTCP packet buffer as senderInfo type, used for received RTCP packets.
// Use functions for this type to parse and access the senderInfo data.
func (rp *CtrlPacket) toSenderInfo(offset int) senderInfo {
return rp.buffer[offset : offset+senderInfoLen]
}
// ntpTimeStamp returns the NTP time stamp as second, fraction as unsigned 32bit in host order.
func (in senderInfo) ntpTimeStamp() (seconds, fraction uint32) {
seconds = binary.BigEndian.Uint32(in[0:])
fraction = binary.BigEndian.Uint32(in[4:])
return
}
// setNtpTimeStamp takes NTP timestamp values in host order and sets it in network order in SR.
func (in senderInfo) setNtpTimeStamp(seconds, fraction uint32) {
binary.BigEndian.PutUint32(in[0:], seconds)
binary.BigEndian.PutUint32(in[4:], fraction)
}
// rtpTimeStamp returns the RTP time stamp as 32bit unsigned in host order.
func (in senderInfo) rtpTimeStamp() uint32 {
return binary.BigEndian.Uint32(in[8:])
}
// setRtpTimeStamp takes a 32 unsigned timestamp in host order and sets it in network order in SR.
func (in senderInfo) setRtpTimeStamp(stamp uint32) {
binary.BigEndian.PutUint32(in[8:], stamp)
}
// packetCount returns the sender's packet count as 32bit unsigned in host order.
func (in senderInfo) packetCount() uint32 {
return binary.BigEndian.Uint32(in[12:])
}
// setPacketCount takes a 32 unsigned counter in host order and sets it in network order in SR.
func (in senderInfo) setPacketCount(cnt uint32) {
binary.BigEndian.PutUint32(in[12:], cnt)
}
// octetCount returns the sender's octet count as 32bit unsigned in host order.
func (in senderInfo) octetCount() uint32 {
return binary.BigEndian.Uint32(in[16:])
}
// setOctetCount takes a 32 unsigned counter in host order and sets it in network order in SR.
func (in senderInfo) setOctetCount(cnt uint32) {
binary.BigEndian.PutUint32(in[16:], cnt)
}
/*
* Functions to fill/access a receiver report structure
*/
// newSenderInfo returns a senderInfo which is positioned at the current inUse offet and advances inUse to point after senderInfo.
func (rp *CtrlPacket) newRecvReport() (report recvReport, offset int) {
report = rp.toRecvReport(rp.inUse)
rp.inUse += len(report)
offset = rp.inUse
return
}
// toRecvReport returns the report blocks byte slices inside the RTCP packet buffer as recvReport type.
// Use functions for this type to parse and access the report blocks data.
func (rp *CtrlPacket) toRecvReport(offset int) recvReport {
return rp.buffer[offset : offset+reportBlockLen]
}
// ssrc returns the receiver report SSRC as 32bit unsigned in host order.
func (rr recvReport) ssrc() uint32 {
return binary.BigEndian.Uint32(rr[0:])
}
// setSSrc takes a 32 unsigned SSRC in host order and sets it in network order in RR.
func (rr recvReport) setSsrc(ssrc uint32) {
binary.BigEndian.PutUint32(rr[0:], ssrc)
}
// packetsLost returns the receiver report packets lost data as 32bit unsigned in host order.
func (rr recvReport) packetsLost() uint32 {
lost := binary.BigEndian.Uint32(rr[4:])
return lost >> 8
}
// setPacketsLost takes a 32 unsigned packet lost number in host order and sets lower 24 bits in network order in RR.
func (rr recvReport) setPacketsLost(pktLost uint32) {
fracSave := rr[4]
pktLost &= 0xffffff
binary.BigEndian.PutUint32(rr[4:], pktLost)
rr[4] = fracSave
}
// packetsLostFrac returns the receiver report packets lost fractional data as byte.
func (rr recvReport) packetsLostFrac() byte {
return rr[4]
}
// setPacketsLostFrac takes the byte packet lost fractional and sets it in RR.
func (rr recvReport) setPacketsLostFrac(frac byte) {
rr[4] = frac
}
// highestSeq returns the receiver report highest sequence number as 32bit unsigned in host order.
func (rr recvReport) highestSeq() uint32 {
return binary.BigEndian.Uint32(rr[8:])
}
// setHighestSeq takes a 32 unsigned sequence number in host order and sets it in network order in RR.
func (rr recvReport) setHighestSeq(seq uint32) {
binary.BigEndian.PutUint32(rr[8:], seq)
}
// jitter returns the receiver report jitter as 32bit unsigned in host order.
func (rr recvReport) jitter() uint32 {
return binary.BigEndian.Uint32(rr[12:])
}
// setJitter takes a 32 unsigned jitter value in host order and sets it in network order in RR.
func (rr recvReport) setJitter(jitter uint32) {
binary.BigEndian.PutUint32(rr[12:], jitter)
}
// lsr returns the receiver report LSR as 32bit unsigned in host order.
func (rr recvReport) lsr() uint32 {
return binary.BigEndian.Uint32(rr[16:])
}
// setLsr takes a 32 unsigned LSR value in host order and sets it in network order in RR.
func (rr recvReport) setLsr(lsr uint32) {
binary.BigEndian.PutUint32(rr[16:], lsr)
}
// dlsr returns the receiver report DLSR as 32bit unsigned in host order.
func (rr recvReport) dlsr() uint32 {
return binary.BigEndian.Uint32(rr[20:])
}
// setDlsr takes a 32 unsigned DLSR value in host order and sets it in network order in RR.
func (rr recvReport) setDlsr(dlsr uint32) {
binary.BigEndian.PutUint32(rr[20:], dlsr)
}
/*
* Functions to fill/access a SDES structure
*/
// newSdesChunk returns a SDES chunk which is positioned at the current inUse offet and advances inUse to point after sdesChunk.
func (rp *CtrlPacket) newSdesChunk(length int) (chunk sdesChunk, offset int) {
chunk = rp.toSdesChunk(rp.inUse, length)
rp.inUse += len(chunk)
offset = rp.inUse
return
}
// toSdesChunk returns the SDES byte slices inside the RTCP packet buffer as sdesChunktype.
// Use functions for this type to parse and access the report blocks data.
func (rp *CtrlPacket) toSdesChunk(offset, length int) sdesChunk {
if offset > len(rp.buffer) || offset+length > len(rp.buffer) {
return nil
}
return rp.buffer[offset : offset+length]
}
// ssrc returns the receiver report SSRC as 32bit unsigned in host order.
func (sdes sdesChunk) ssrc() uint32 {
return binary.BigEndian.Uint32(sdes[0:])
}
// setSSrc takes a 32 unsigned SSRC in host order and sets it in network order in SDES chunk.
func (sdes sdesChunk) setSsrc(ssrc uint32) {
binary.BigEndian.PutUint32(sdes[0:], ssrc)
}
// setItemData takes the item type and the item text and fills it into the chunk.
// The functions returns the offset where to store the next item.
func (sdes sdesChunk) setItemData(itemOffset int, itemType byte, text string) int {
sdes[itemOffset] = itemType
sdes[itemOffset+1] = byte(len(text))
return copy(sdes[itemOffset+2:], text) + 2
}
func (sdes sdesChunk) getItemType(itemOffset int) int {
return int(sdes[itemOffset])
}
func (sdes sdesChunk) getItemLen(itemOffset int) int {
return int(sdes[itemOffset+1])
}
func (sdes sdesChunk) getItemText(itemOffset, length int) string {
if itemOffset+2+length > len(sdes) {
return ""
}
return string(sdes[itemOffset+2 : itemOffset+2+length])
}
func (sc sdesChunk) chunkLen() (int, bool) {
// length is at least: SSRC plus SdesEnd byte
if 4+1 > len(sc) {
return 0, false
}
length := 4 // include SSRC field of this chunk
itemType := sc[length]
if itemType == SdesEnd { // Cover case if chunk has zero items
if 4+4 > len(sc) { // SSRC (4 byte), SdesEnd (1 byte) plus 3 bytes padding
return 0, false
}
return 8, true
}
// Loop over valid items and add their overall length to offset.
for ; itemType != SdesEnd; itemType = sc[length] {
length += int(sc[length+1]) + 2 // lenght points to next item type field
if length > len(sc) {
return 0, false
}
}
return (length + 4) &^ 0x3, true
}
// newByePacket returns a BYE data structure which is positioned at the current inUse offet and advances inUse to point after BYE.
func (rp *CtrlPacket) newByeData(length int) (bye byeData, offset int) {
bye = rp.toByeData(rp.inUse, length)
rp.inUse += len(bye)
offset = rp.inUse
return
}
// toByePacket returns the BYE byte slices inside the RTCP packet buffer as byePacket type.
// Use functions for this type to parse and access the BYE data.
func (rp *CtrlPacket) toByeData(offset, length int) byeData {
if offset > len(rp.buffer) || offset+length > len(rp.buffer) {
return nil
}
return rp.buffer[offset : offset+length]
}
// ssrc returns the bye data SSRC at ssrcIdx as 32bit unsigned in host order.
func (bye byeData) ssrc(ssrcIdx int) uint32 {
if (ssrcIdx+1)*4 > len(bye) {
return 0
}
return binary.BigEndian.Uint32(bye[ssrcIdx*4:])
}
// setSSrc takes a 32 unsigned SSRC in host order and sets it at ssrcIdx in bye data (network order).
func (bye byeData) setSsrc(ssrcIdx int, ssrc uint32) {
binary.BigEndian.PutUint32(bye[ssrcIdx*4:], ssrc)
}
// setReason takes reason text and fills it into the bye data after ssrcCnt SSRC/CSRC entries.
// The functions returns the offset where to store the next item.
func (bye byeData) setReason(reason string, ssrcCnt int) {
bye[ssrcCnt*4] = byte(len(reason))
copy(bye[ssrcCnt*4+1:], reason)
}
// getReason returns the reason string if it is available
func (bye byeData) getReason(ssrcCnt int) string {
offset := ssrcCnt * 4
if offset >= len(bye) {
return ""
}
length := int(bye[offset])
offset++
if offset+length > len(bye) {
return ""
}
return string(bye[offset : offset+length])
}