From 2355dc6f6c0697f0866777a64473350c40bdce2e Mon Sep 17 00:00:00 2001 From: Antoine CARME Date: Thu, 9 Mar 2023 02:57:31 +0100 Subject: [PATCH] Python 3.11 support #227. Removed some old logs. --- .../issue_55/grouping_issue_55_notebook.log | 1958 ----------------- .../bugs/issue_56/issue_56_order1.log | 430 ---- .../bugs/issue_56/issue_56_order2.log | 430 ---- ...hierarchy_AU_all_reconciliations_plots.log | 827 ------- .../plots/test_hierarchy_AU_plots.log | 731 ------ 5 files changed, 4376 deletions(-) delete mode 100644 tests/references/bugs/issue_55/grouping_issue_55_notebook.log delete mode 100644 tests/references/bugs/issue_56/issue_56_order1.log delete mode 100644 tests/references/bugs/issue_56/issue_56_order2.log delete mode 100644 tests/references/plots/test_hierarchy_AU_all_reconciliations_plots.log delete mode 100644 tests/references/plots/test_hierarchy_AU_plots.log diff --git a/tests/references/bugs/issue_55/grouping_issue_55_notebook.log b/tests/references/bugs/issue_55/grouping_issue_55_notebook.log deleted file mode 100644 index b99e35926..000000000 --- a/tests/references/bugs/issue_55/grouping_issue_55_notebook.log +++ /dev/null @@ -1,1958 +0,0 @@ -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_PLOTTING') -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.311, 'HIERARCHICAL_PLOTTING') -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_TRAINING') -INFO:pyaf.timing:('OPERATION_START', ('SIGNAL_TRAINING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Transformations': [('ALSACE_BLANC_BE', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_BE', 'None', '_', 'T+S+R'), ('_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_CN', 'None', '_', 'T+S+R'), ('_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_DE', 'None', '_', 'T+S+R'), ('_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_GB', 'None', '_', 'T+S+R'), ('_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_US', 'None', '_', 'T+S+R'), ('_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_BE', 'None', '_', 'T+S+R'), ('_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_CN', 'None', '_', 'T+S+R'), ('_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_DE', 'None', '_', 'T+S+R'), ('_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_GB', 'None', '_', 'T+S+R'), ('_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_US', 'None', '_', 'T+S+R'), ('_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('__BE', 'None', '_', 'T+S+R'), ('__BE', 'None', 'Diff_', 'T+S+R'), ('__BE', 'None', 'RelDiff_', 'T+S+R'), ('__BE', 'None', 'CumSum_', 'T+S+R'), ('__CN', 'None', '_', 'T+S+R'), ('__CN', 'None', 'Diff_', 'T+S+R'), ('__CN', 'None', 'RelDiff_', 'T+S+R'), ('__CN', 'None', 'CumSum_', 'T+S+R'), ('__DE', 'None', '_', 'T+S+R'), ('__DE', 'None', 'Diff_', 'T+S+R'), ('__DE', 'None', 'RelDiff_', 'T+S+R'), ('__DE', 'None', 'CumSum_', 'T+S+R'), ('__GB', 'None', '_', 'T+S+R'), ('__GB', 'None', 'Diff_', 'T+S+R'), ('__GB', 'None', 'RelDiff_', 'T+S+R'), ('__GB', 'None', 'CumSum_', 'T+S+R'), ('__US', 'None', '_', 'T+S+R'), ('__US', 'None', 'Diff_', 'T+S+R'), ('__US', 'None', 'RelDiff_', 'T+S+R'), ('__US', 'None', 'CumSum_', 'T+S+R'), ('__', 'None', '_', 'T+S+R'), ('__', 'None', 'Diff_', 'T+S+R'), ('__', 'None', 'RelDiff_', 'T+S+R'), ('__', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -{'Levels': None, 'Data': None, 'Groups': {'Country': ['GB', 'US', 'DE', 'BE', 'CN'], 'Variant': ['BLANC', 'ROUGE'], 'Wine': ['ALSACE', 'BEAUJOLAIS', 'BORDEAUX']}, 'GroupOrder': ['Wine', 'Variant', 'Country'], 'Type': 'Grouped'} - -{0: {'ALSACE_BLANC_BE': [], 'ALSACE_BLANC_CN': [], 'ALSACE_BLANC_DE': [], 'ALSACE_BLANC_GB': [], 'ALSACE_BLANC_US': [], 'BEAUJOLAIS_ROUGE_BE': [], 'BEAUJOLAIS_ROUGE_CN': [], 'BEAUJOLAIS_ROUGE_DE': [], 'BEAUJOLAIS_ROUGE_GB': [], 'BEAUJOLAIS_ROUGE_US': [], 'BORDEAUX_BLANC_BE': [], 'BORDEAUX_BLANC_CN': [], 'BORDEAUX_BLANC_DE': [], 'BORDEAUX_BLANC_GB': [], 'BORDEAUX_BLANC_US': [], 'BORDEAUX_ROUGE_BE': [], 'BORDEAUX_ROUGE_CN': [], 'BORDEAUX_ROUGE_DE': [], 'BORDEAUX_ROUGE_GB': [], 'BORDEAUX_ROUGE_US': []}, 1: {'_BLANC_BE': ['ALSACE_BLANC_BE', 'BORDEAUX_BLANC_BE'], '_BLANC_CN': ['ALSACE_BLANC_CN', 'BORDEAUX_BLANC_CN'], '_BLANC_DE': ['ALSACE_BLANC_DE', 'BORDEAUX_BLANC_DE'], '_BLANC_GB': ['ALSACE_BLANC_GB', 'BORDEAUX_BLANC_GB'], '_BLANC_US': ['ALSACE_BLANC_US', 'BORDEAUX_BLANC_US'], '_ROUGE_BE': ['BEAUJOLAIS_ROUGE_BE', 'BORDEAUX_ROUGE_BE'], '_ROUGE_CN': ['BEAUJOLAIS_ROUGE_CN', 'BORDEAUX_ROUGE_CN'], '_ROUGE_DE': ['BEAUJOLAIS_ROUGE_DE', 'BORDEAUX_ROUGE_DE'], '_ROUGE_GB': ['BEAUJOLAIS_ROUGE_GB', 'BORDEAUX_ROUGE_GB'], '_ROUGE_US': ['BEAUJOLAIS_ROUGE_US', 'BORDEAUX_ROUGE_US']}, 2: {'__BE': ['_BLANC_BE', '_ROUGE_BE'], '__CN': ['_BLANC_CN', '_ROUGE_CN'], '__DE': ['_BLANC_DE', '_ROUGE_DE'], '__GB': ['_BLANC_GB', '_ROUGE_GB'], '__US': ['_BLANC_US', '_ROUGE_US']}, 3: {'__': ['__BE', '__CN', '__DE', '__GB', '__US']}} -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': '_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': 'Diff_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': 'RelDiff_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': '_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': 'CumSum_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': 'RelDiff_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': 'Diff_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': 'CumSum_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.572, ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': 'Diff_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': '_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.69, ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': '_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': 'Diff_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.724, ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': 'CumSum_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': 'RelDiff_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.815, ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': '_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.831, ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': 'CumSum_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': 'CumSum_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.846, ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': 'Diff_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': '_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': 'Diff_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.891, ('TRAINING', {'Signal': 'ALSACE_BLANC_CN', 'Transformation': 'RelDiff_ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': 'RelDiff_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.022, ('TRAINING', {'Signal': 'ALSACE_BLANC_BE', 'Transformation': 'RelDiff_ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': 'CumSum_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.62, ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': 'Diff_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': '_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.762, ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': '_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.548, ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': 'CumSum_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.647, ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': 'Diff_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.78, ('TRAINING', {'Signal': 'ALSACE_BLANC_DE', 'Transformation': 'RelDiff_ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': 'Diff_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': 'RelDiff_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': 'CumSum_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.766, ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': '_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': '_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.58, ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': 'CumSum_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.79, ('TRAINING', {'Signal': 'ALSACE_BLANC_GB', 'Transformation': 'RelDiff_ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.806, ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': '_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.52, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': '_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.495, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': '_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.657, ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': 'RelDiff_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.707, ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': 'Diff_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.596, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': '_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.809, ('TRAINING', {'Signal': 'ALSACE_BLANC_US', 'Transformation': 'CumSum_ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.707, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.532, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': '_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': '_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.53, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': '_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.605, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.748, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.703, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': '_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.798, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.557, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.547, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': '_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.827, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': '_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.533, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': 'Diff_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.499, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': '_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': 'RelDiff_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.524, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': 'Diff_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': 'CumSum_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.751, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': '_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.845, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.471, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': '_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': 'Diff_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': 'RelDiff_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.47, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': 'Diff_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': 'CumSum_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.869, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': 'RelDiff_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': '_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.754, ('TRAINING', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformation': 'CumSum_BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': 'Diff_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.686, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': 'RelDiff_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': 'RelDiff_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.646, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformation': 'CumSum_BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': 'CumSum_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.688, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': '_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': '_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.749, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': 'Diff_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.599, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': '_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': 'Diff_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': 'RelDiff_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.749, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': 'CumSum_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': 'CumSum_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.923, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformation': 'RelDiff_BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': '_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.733, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': 'Diff_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': 'Diff_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.506, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': '_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': 'RelDiff_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.633, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': 'CumSum_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.789, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformation': 'RelDiff_BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': 'CumSum_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': '_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.487, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': 'CumSum_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.557, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': 'Diff_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': 'Diff_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.654, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformation': 'RelDiff_BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': 'CumSum_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.714, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': '_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.699, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': 'Diff_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': '_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': 'Diff_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.591, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': 'RelDiff_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.524, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': '_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': 'CumSum_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.71, ('TRAINING', {'Signal': 'BORDEAUX_BLANC_US', 'Transformation': 'CumSum_BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': '_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.612, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': 'Diff_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.599, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': 'Diff_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.645, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformation': 'CumSum_BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': 'CumSum_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.533, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': 'Diff_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': '_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.639, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': 'CumSum_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.73, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': '_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': 'Diff_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.774, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': 'CumSum_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.698, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': '_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.672, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': 'Diff_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': '_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': 'Diff_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.593, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': 'CumSum_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.816, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': 'CumSum_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.48, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': 'Diff_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': '__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.588, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': '_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': 'Diff__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.46, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': '_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': 'RelDiff__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.777, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': 'CumSum__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.486, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': 'CumSum_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.749, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformation': 'CumSum_BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': '__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.595, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': 'RelDiff_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': 'Diff__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': 'RelDiff__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.712, ('TRAINING', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformation': 'Diff_BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': 'CumSum__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.467, ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': 'Diff__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': '__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.734, ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': '__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': 'Diff__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.634, ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': 'RelDiff__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': 'RelDiff__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.524, ('TRAINING', {'Signal': '_BLANC_BE', 'Transformation': 'CumSum__BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': 'CumSum__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.53, ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': 'CumSum__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': '__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.508, ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': '__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.647, ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': '__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': 'Diff__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.618, ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': 'RelDiff__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': 'RelDiff__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': 'CumSum__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.768, ('TRAINING', {'Signal': '_BLANC_CN', 'Transformation': 'Diff__BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': '__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.488, ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': '__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': 'Diff__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.786, ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': 'RelDiff__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.867, ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': 'Diff__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': 'RelDiff__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.527, ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': 'CumSum__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.608, ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': 'Diff__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': 'CumSum__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.796, ('TRAINING', {'Signal': '_BLANC_DE', 'Transformation': 'CumSum__BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': '__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': 'Diff__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.663, ('TRAINING', {'Signal': '_BLANC_GB', 'Transformation': 'RelDiff__BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': 'RelDiff__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.562, ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': '__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': 'CumSum__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': '__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.544, ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': 'Diff__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': 'Diff__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.759, ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': 'CumSum__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.673, ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': 'CumSum__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': 'RelDiff__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.75, ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': '__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.741, ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': 'Diff__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': 'CumSum__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.718, ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': '__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': '__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.977, ('TRAINING', {'Signal': '_BLANC_US', 'Transformation': 'RelDiff__BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.541, ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': 'Diff__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.934, ('TRAINING', {'Signal': '_ROUGE_BE', 'Transformation': 'RelDiff__ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': 'Diff__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': 'RelDiff__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': 'CumSum__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': '__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': 'Diff__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.549, ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': '__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': 'RelDiff__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.631, ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': 'CumSum__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': 'CumSum__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.838, ('TRAINING', {'Signal': '_ROUGE_CN', 'Transformation': 'RelDiff__ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': '__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.508, ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': '__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.572, ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': 'CumSum__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.706, ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': 'Diff__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': 'Diff__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': 'RelDiff__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.498, ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': 'CumSum__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.753, ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': 'Diff__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': 'CumSum__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.617, ('TRAINING', {'Signal': '_ROUGE_GB', 'Transformation': 'RelDiff__ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.875, ('TRAINING', {'Signal': '_ROUGE_DE', 'Transformation': 'RelDiff__ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__BE', 'Transformation': '___BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__BE', 'Transformation': 'Diff___BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__BE', 'Transformation': 'RelDiff___BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__BE', 'Transformation': 'CumSum___BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.605, ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': '__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.487, ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': 'Diff__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__CN', 'Transformation': '___CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__CN', 'Transformation': 'Diff___CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.614, ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': 'RelDiff__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__CN', 'Transformation': 'RelDiff___CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.514, ('TRAINING', {'Signal': '__BE', 'Transformation': 'CumSum___BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__CN', 'Transformation': 'CumSum___CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.62, ('TRAINING', {'Signal': '__BE', 'Transformation': 'RelDiff___BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__DE', 'Transformation': '___DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.734, ('TRAINING', {'Signal': '_ROUGE_US', 'Transformation': 'CumSum__ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__DE', 'Transformation': 'Diff___DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.746, ('TRAINING', {'Signal': '__BE', 'Transformation': '___BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.726, ('TRAINING', {'Signal': '__BE', 'Transformation': 'Diff___BE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__DE', 'Transformation': 'RelDiff___DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.494, ('TRAINING', {'Signal': '__CN', 'Transformation': '___CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__DE', 'Transformation': 'CumSum___DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__GB', 'Transformation': '___GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.653, ('TRAINING', {'Signal': '__CN', 'Transformation': 'Diff___CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__GB', 'Transformation': 'Diff___GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.497, ('TRAINING', {'Signal': '__DE', 'Transformation': '___DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.735, ('TRAINING', {'Signal': '__CN', 'Transformation': 'RelDiff___CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__GB', 'Transformation': 'RelDiff___GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__GB', 'Transformation': 'CumSum___GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.598, ('TRAINING', {'Signal': '__CN', 'Transformation': 'CumSum___CN'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__US', 'Transformation': '___US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.562, ('TRAINING', {'Signal': '__DE', 'Transformation': 'Diff___DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__US', 'Transformation': 'Diff___US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.496, ('TRAINING', {'Signal': '__DE', 'Transformation': 'CumSum___DE'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__US', 'Transformation': 'RelDiff___US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.642, ('TRAINING', {'Signal': '__GB', 'Transformation': 'Diff___GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.754, ('TRAINING', {'Signal': '__GB', 'Transformation': '___GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__US', 'Transformation': 'CumSum___US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__', 'Transformation': '___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.492, ('TRAINING', {'Signal': '__US', 'Transformation': '___US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__', 'Transformation': 'Diff___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.565, ('TRAINING', {'Signal': '__GB', 'Transformation': 'CumSum___GB'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__', 'Transformation': 'RelDiff___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.523, ('TRAINING', {'Signal': '__US', 'Transformation': 'Diff___US'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '__', 'Transformation': 'CumSum___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.672, ('TRAINING', {'Signal': '__GB', 'Transformation': 'RelDiff___GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.227, ('TRAINING', {'Signal': '__DE', 'Transformation': 'RelDiff___DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.5, ('TRAINING', {'Signal': '__', 'Transformation': 'Diff___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.559, ('TRAINING', {'Signal': '__', 'Transformation': '___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.52, ('TRAINING', {'Signal': '__', 'Transformation': 'CumSum___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.043, ('TRAINING', {'Signal': '__US', 'Transformation': 'RelDiff___US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.591, ('TRAINING', {'Signal': '__', 'Transformation': 'RelDiff___'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.808, ('TRAINING', {'Signal': '__US', 'Transformation': 'CumSum___US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 13.216, ('SIGNAL_TRAINING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Transformations': [('ALSACE_BLANC_BE', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', '_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', '_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', '_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', '_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_BE', 'None', '_', 'T+S+R'), ('_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_CN', 'None', '_', 'T+S+R'), ('_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_DE', 'None', '_', 'T+S+R'), ('_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_GB', 'None', '_', 'T+S+R'), ('_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_US', 'None', '_', 'T+S+R'), ('_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_BE', 'None', '_', 'T+S+R'), ('_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_CN', 'None', '_', 'T+S+R'), ('_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_DE', 'None', '_', 'T+S+R'), ('_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_GB', 'None', '_', 'T+S+R'), ('_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_US', 'None', '_', 'T+S+R'), ('_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('__BE', 'None', '_', 'T+S+R'), ('__BE', 'None', 'Diff_', 'T+S+R'), ('__BE', 'None', 'RelDiff_', 'T+S+R'), ('__BE', 'None', 'CumSum_', 'T+S+R'), ('__CN', 'None', '_', 'T+S+R'), ('__CN', 'None', 'Diff_', 'T+S+R'), ('__CN', 'None', 'RelDiff_', 'T+S+R'), ('__CN', 'None', 'CumSum_', 'T+S+R'), ('__DE', 'None', '_', 'T+S+R'), ('__DE', 'None', 'Diff_', 'T+S+R'), ('__DE', 'None', 'RelDiff_', 'T+S+R'), ('__DE', 'None', 'CumSum_', 'T+S+R'), ('__GB', 'None', '_', 'T+S+R'), ('__GB', 'None', 'Diff_', 'T+S+R'), ('__GB', 'None', 'RelDiff_', 'T+S+R'), ('__GB', 'None', 'CumSum_', 'T+S+R'), ('__US', 'None', '_', 'T+S+R'), ('__US', 'None', 'Diff_', 'T+S+R'), ('__US', 'None', 'RelDiff_', 'T+S+R'), ('__US', 'None', 'CumSum_', 'T+S+R'), ('__', 'None', '_', 'T+S+R'), ('__', 'None', 'Diff_', 'T+S+R'), ('__', 'None', 'RelDiff_', 'T+S+R'), ('__', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('FINALIZE_TRAINING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Transformations': [('ALSACE_BLANC_BE', [('ALSACE_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_CN', [('ALSACE_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_DE', [('ALSACE_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_GB', [('ALSACE_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_US', [('ALSACE_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_BE', [('BEAUJOLAIS_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_CN', [('BEAUJOLAIS_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_DE', [('BEAUJOLAIS_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_GB', [('BEAUJOLAIS_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_US', [('BEAUJOLAIS_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_BE', [('BORDEAUX_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_CN', [('BORDEAUX_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_DE', [('BORDEAUX_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_GB', [('BORDEAUX_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_US', [('BORDEAUX_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_BE', [('BORDEAUX_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_CN', [('BORDEAUX_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_DE', [('BORDEAUX_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_GB', [('BORDEAUX_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_US', [('BORDEAUX_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', '_', 'T+S+R')]), ('_BLANC_BE', [('_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_BE', 'None', '_', 'T+S+R')]), ('_BLANC_CN', [('_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_CN', 'None', '_', 'T+S+R')]), ('_BLANC_DE', [('_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_DE', 'None', '_', 'T+S+R')]), ('_BLANC_GB', [('_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_GB', 'None', '_', 'T+S+R')]), ('_BLANC_US', [('_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_US', 'None', '_', 'T+S+R')]), ('_ROUGE_BE', [('_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_BE', 'None', '_', 'T+S+R')]), ('_ROUGE_CN', [('_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_CN', 'None', '_', 'T+S+R')]), ('_ROUGE_DE', [('_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_DE', 'None', '_', 'T+S+R')]), ('_ROUGE_GB', [('_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_GB', 'None', '_', 'T+S+R')]), ('_ROUGE_US', [('_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_US', 'None', '_', 'T+S+R')]), ('__BE', [('__BE', 'None', 'CumSum_', 'T+S+R'), ('__BE', 'None', 'Diff_', 'T+S+R'), ('__BE', 'None', 'RelDiff_', 'T+S+R'), ('__BE', 'None', '_', 'T+S+R')]), ('__CN', [('__CN', 'None', 'CumSum_', 'T+S+R'), ('__CN', 'None', 'Diff_', 'T+S+R'), ('__CN', 'None', 'RelDiff_', 'T+S+R'), ('__CN', 'None', '_', 'T+S+R')]), ('__DE', [('__DE', 'None', 'CumSum_', 'T+S+R'), ('__DE', 'None', 'Diff_', 'T+S+R'), ('__DE', 'None', 'RelDiff_', 'T+S+R'), ('__DE', 'None', '_', 'T+S+R')]), ('__GB', [('__GB', 'None', 'CumSum_', 'T+S+R'), ('__GB', 'None', 'Diff_', 'T+S+R'), ('__GB', 'None', 'RelDiff_', 'T+S+R'), ('__GB', 'None', '_', 'T+S+R')]), ('__US', [('__US', 'None', 'CumSum_', 'T+S+R'), ('__US', 'None', 'Diff_', 'T+S+R'), ('__US', 'None', 'RelDiff_', 'T+S+R'), ('__US', 'None', '_', 'T+S+R')]), ('__', [('__', 'None', 'CumSum_', 'T+S+R'), ('__', 'None', 'Diff_', 'T+S+R'), ('__', 'None', 'RelDiff_', 'T+S+R'), ('__', 'None', '_', 'T+S+R')])], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_BE', 'Transformations': [('ALSACE_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_BE', 'Transformations': [('ALSACE_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_BE', 'Model': '_ALSACE_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.031, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_BE', 'Model': '_ALSACE_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.023, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_CN', 'Transformations': [('ALSACE_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.013, ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_CN', 'Transformations': [('ALSACE_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_CN', 'Model': '_ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.05, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_CN', 'Model': '_ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_DE', 'Transformations': [('ALSACE_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.018, ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_DE', 'Transformations': [('ALSACE_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_DE', 'Model': 'Diff_ALSACE_BLANC_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.03, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.033, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_DE', 'Model': 'Diff_ALSACE_BLANC_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_GB', 'Transformations': [('ALSACE_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.012, ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_GB', 'Transformations': [('ALSACE_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_GB', 'Model': '_ALSACE_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.027, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.027, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_GB', 'Model': '_ALSACE_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.023, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_US', 'Transformations': [('ALSACE_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.011, ('MODEL_SELECTION', {'Signal': 'ALSACE_BLANC_US', 'Transformations': [('ALSACE_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_US', 'Model': 'Diff_ALSACE_BLANC_US_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.031, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'ALSACE_BLANC_US', 'Model': 'Diff_ALSACE_BLANC_US_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.029, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'ALSACE_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformations': [('BEAUJOLAIS_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.011, ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Transformations': [('BEAUJOLAIS_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Model': 'Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.034, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_BE', 'Model': 'Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.029, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformations': [('BEAUJOLAIS_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.012, ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Transformations': [('BEAUJOLAIS_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Model': 'CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.03, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_CN', 'Model': 'CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.026, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformations': [('BEAUJOLAIS_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.01, ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Transformations': [('BEAUJOLAIS_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Model': 'Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.04, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_DE', 'Model': 'Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.04, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformations': [('BEAUJOLAIS_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Transformations': [('BEAUJOLAIS_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Model': 'RelDiff_BEAUJOLAIS_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.031, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_GB', 'Model': 'RelDiff_BEAUJOLAIS_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.031, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformations': [('BEAUJOLAIS_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Transformations': [('BEAUJOLAIS_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Model': '_BEAUJOLAIS_ROUGE_US_PolyTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.027, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BEAUJOLAIS_ROUGE_US', 'Model': '_BEAUJOLAIS_ROUGE_US_PolyTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.029, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BEAUJOLAIS_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformations': [('BORDEAUX_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_BE', 'Transformations': [('BORDEAUX_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_BE', 'Model': 'CumSum_BORDEAUX_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_BE', 'Model': 'CumSum_BORDEAUX_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformations': [('BORDEAUX_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_CN', 'Transformations': [('BORDEAUX_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_CN', 'Model': '_BORDEAUX_BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.022, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_CN', 'Model': '_BORDEAUX_BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.023, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformations': [('BORDEAUX_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.008, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_DE', 'Transformations': [('BORDEAUX_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_DE', 'Model': '_BORDEAUX_BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.036, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_DE', 'Model': '_BORDEAUX_BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.036, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformations': [('BORDEAUX_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.007, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_GB', 'Transformations': [('BORDEAUX_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_GB', 'Model': 'Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.026, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_GB', 'Model': 'Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.027, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_US', 'Transformations': [('BORDEAUX_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_BLANC_US', 'Transformations': [('BORDEAUX_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_US', 'Model': 'Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.027, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_BLANC_US', 'Model': 'Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.031, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformations': [('BORDEAUX_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.007, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_BE', 'Transformations': [('BORDEAUX_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_BE', 'Model': '_BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.03, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_BE', 'Model': '_BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.029, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformations': [('BORDEAUX_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_CN', 'Transformations': [('BORDEAUX_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_CN', 'Model': 'Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.026, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_CN', 'Model': 'Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.05, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformations': [('BORDEAUX_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.012, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_DE', 'Transformations': [('BORDEAUX_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_DE', 'Model': 'Diff_BORDEAUX_ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.03, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_DE', 'Model': 'Diff_BORDEAUX_ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformations': [('BORDEAUX_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformations': [('BORDEAUX_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.012, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_GB', 'Transformations': [('BORDEAUX_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_GB', 'Model': '_BORDEAUX_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.005, ('MODEL_SELECTION', {'Signal': 'BORDEAUX_ROUGE_US', 'Transformations': [('BORDEAUX_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_US', 'Model': '_BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_US', 'Model': '_BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.033, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BORDEAUX_ROUGE_GB', 'Model': '_BORDEAUX_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_BLANC_BE', 'Transformations': [('_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.012, ('MODEL_SELECTION', {'Signal': '_BLANC_BE', 'Transformations': [('_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_BE', 'Model': '__BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.03, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BORDEAUX_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.057, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_BE', 'Model': '__BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.044, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_BLANC_CN', 'Transformations': [('_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': '_BLANC_CN', 'Transformations': [('_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_CN', 'Model': '__BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_CN', 'Model': '__BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.033, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_BLANC_DE', 'Transformations': [('_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': '_BLANC_DE', 'Transformations': [('_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_DE', 'Model': '__BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.035, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_DE', 'Model': '__BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_BLANC_GB', 'Transformations': [('_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.013, ('MODEL_SELECTION', {'Signal': '_BLANC_GB', 'Transformations': [('_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_GB', 'Model': 'Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.031, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_GB', 'Model': 'Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.029, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_BLANC_US', 'Transformations': [('_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': '_BLANC_US', 'Transformations': [('_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_US', 'Model': 'Diff__BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.028, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_BLANC_US', 'Model': 'Diff__BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.031, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_BLANC_US'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_ROUGE_BE', 'Transformations': [('_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.008, ('MODEL_SELECTION', {'Signal': '_ROUGE_BE', 'Transformations': [('_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_BE', 'Model': '__ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.04, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_BE', 'Model': '__ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.039, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_BE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_ROUGE_CN', 'Transformations': [('_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': '_ROUGE_CN', 'Transformations': [('_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_CN', 'Model': 'Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.028, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_CN', 'Model': 'Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.027, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_CN'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_ROUGE_DE', 'Transformations': [('_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.005, ('MODEL_SELECTION', {'Signal': '_ROUGE_DE', 'Transformations': [('_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_DE', 'Model': 'Diff__ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_DE', 'Model': 'Diff__ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_DE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_ROUGE_GB', 'Transformations': [('_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.007, ('MODEL_SELECTION', {'Signal': '_ROUGE_GB', 'Transformations': [('_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_GB', 'Model': '__ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_GB', 'Model': '__ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_GB'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_ROUGE_US', 'Transformations': [('_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': '_ROUGE_US', 'Transformations': [('_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_US', 'Model': 'Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.026, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_ROUGE_US', 'Model': 'Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.028, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_ROUGE_US'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '__BE', 'Transformations': [('__BE', 'None', 'CumSum_', 'T+S+R'), ('__BE', 'None', 'Diff_', 'T+S+R'), ('__BE', 'None', 'RelDiff_', 'T+S+R'), ('__BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': '__BE', 'Transformations': [('__BE', 'None', 'CumSum_', 'T+S+R'), ('__BE', 'None', 'Diff_', 'T+S+R'), ('__BE', 'None', 'RelDiff_', 'T+S+R'), ('__BE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__BE', 'Model': 'CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__BE', 'Model': 'CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__BE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__BE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '__CN', 'Transformations': [('__CN', 'None', 'CumSum_', 'T+S+R'), ('__CN', 'None', 'Diff_', 'T+S+R'), ('__CN', 'None', 'RelDiff_', 'T+S+R'), ('__CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.007, ('MODEL_SELECTION', {'Signal': '__CN', 'Transformations': [('__CN', 'None', 'CumSum_', 'T+S+R'), ('__CN', 'None', 'Diff_', 'T+S+R'), ('__CN', 'None', 'RelDiff_', 'T+S+R'), ('__CN', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__CN', 'Model': '___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__CN', 'Model': '___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__CN'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__CN'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '__DE', 'Transformations': [('__DE', 'None', 'CumSum_', 'T+S+R'), ('__DE', 'None', 'Diff_', 'T+S+R'), ('__DE', 'None', 'RelDiff_', 'T+S+R'), ('__DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.008, ('MODEL_SELECTION', {'Signal': '__DE', 'Transformations': [('__DE', 'None', 'CumSum_', 'T+S+R'), ('__DE', 'None', 'Diff_', 'T+S+R'), ('__DE', 'None', 'RelDiff_', 'T+S+R'), ('__DE', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__DE', 'Model': '___DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.032, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__DE', 'Model': '___DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__DE'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.023, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__DE'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '__GB', 'Transformations': [('__GB', 'None', 'CumSum_', 'T+S+R'), ('__GB', 'None', 'Diff_', 'T+S+R'), ('__GB', 'None', 'RelDiff_', 'T+S+R'), ('__GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.006, ('MODEL_SELECTION', {'Signal': '__GB', 'Transformations': [('__GB', 'None', 'CumSum_', 'T+S+R'), ('__GB', 'None', 'Diff_', 'T+S+R'), ('__GB', 'None', 'RelDiff_', 'T+S+R'), ('__GB', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__GB', 'Model': '___GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__GB', 'Model': '___GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__GB'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__GB'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '__US', 'Transformations': [('__US', 'None', 'CumSum_', 'T+S+R'), ('__US', 'None', 'Diff_', 'T+S+R'), ('__US', 'None', 'RelDiff_', 'T+S+R'), ('__US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.005, ('MODEL_SELECTION', {'Signal': '__US', 'Transformations': [('__US', 'None', 'CumSum_', 'T+S+R'), ('__US', 'None', 'Diff_', 'T+S+R'), ('__US', 'None', 'RelDiff_', 'T+S+R'), ('__US', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__US', 'Model': '___US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__US', 'Model': '___US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__US'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '__', 'Transformations': [('__', 'None', 'CumSum_', 'T+S+R'), ('__', 'None', 'Diff_', 'T+S+R'), ('__', 'None', 'RelDiff_', 'T+S+R'), ('__', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.005, ('MODEL_SELECTION', {'Signal': '__', 'Transformations': [('__', 'None', 'CumSum_', 'T+S+R'), ('__', 'None', 'Diff_', 'T+S+R'), ('__', 'None', 'RelDiff_', 'T+S+R'), ('__', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__', 'Model': 'Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__US'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.024, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '__', 'Model': 'Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.025, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 6.406, ('FINALIZE_TRAINING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Transformations': [('ALSACE_BLANC_BE', [('ALSACE_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_BE', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_CN', [('ALSACE_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_CN', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_DE', [('ALSACE_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_DE', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_GB', [('ALSACE_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_GB', 'None', '_', 'T+S+R')]), ('ALSACE_BLANC_US', [('ALSACE_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('ALSACE_BLANC_US', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_BE', [('BEAUJOLAIS_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_BE', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_CN', [('BEAUJOLAIS_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_CN', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_DE', [('BEAUJOLAIS_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_DE', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_GB', [('BEAUJOLAIS_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_GB', 'None', '_', 'T+S+R')]), ('BEAUJOLAIS_ROUGE_US', [('BEAUJOLAIS_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BEAUJOLAIS_ROUGE_US', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_BE', [('BORDEAUX_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_BE', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_CN', [('BORDEAUX_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_CN', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_DE', [('BORDEAUX_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_DE', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_GB', [('BORDEAUX_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_GB', 'None', '_', 'T+S+R')]), ('BORDEAUX_BLANC_US', [('BORDEAUX_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_BLANC_US', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_BE', [('BORDEAUX_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_BE', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_CN', [('BORDEAUX_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_CN', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_DE', [('BORDEAUX_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_DE', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_GB', [('BORDEAUX_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_GB', 'None', '_', 'T+S+R')]), ('BORDEAUX_ROUGE_US', [('BORDEAUX_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('BORDEAUX_ROUGE_US', 'None', '_', 'T+S+R')]), ('_BLANC_BE', [('_BLANC_BE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_BE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_BE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_BE', 'None', '_', 'T+S+R')]), ('_BLANC_CN', [('_BLANC_CN', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_CN', 'None', 'Diff_', 'T+S+R'), ('_BLANC_CN', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_CN', 'None', '_', 'T+S+R')]), ('_BLANC_DE', [('_BLANC_DE', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_DE', 'None', 'Diff_', 'T+S+R'), ('_BLANC_DE', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_DE', 'None', '_', 'T+S+R')]), ('_BLANC_GB', [('_BLANC_GB', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_GB', 'None', 'Diff_', 'T+S+R'), ('_BLANC_GB', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_GB', 'None', '_', 'T+S+R')]), ('_BLANC_US', [('_BLANC_US', 'None', 'CumSum_', 'T+S+R'), ('_BLANC_US', 'None', 'Diff_', 'T+S+R'), ('_BLANC_US', 'None', 'RelDiff_', 'T+S+R'), ('_BLANC_US', 'None', '_', 'T+S+R')]), ('_ROUGE_BE', [('_ROUGE_BE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_BE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_BE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_BE', 'None', '_', 'T+S+R')]), ('_ROUGE_CN', [('_ROUGE_CN', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_CN', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_CN', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_CN', 'None', '_', 'T+S+R')]), ('_ROUGE_DE', [('_ROUGE_DE', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_DE', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_DE', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_DE', 'None', '_', 'T+S+R')]), ('_ROUGE_GB', [('_ROUGE_GB', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_GB', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_GB', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_GB', 'None', '_', 'T+S+R')]), ('_ROUGE_US', [('_ROUGE_US', 'None', 'CumSum_', 'T+S+R'), ('_ROUGE_US', 'None', 'Diff_', 'T+S+R'), ('_ROUGE_US', 'None', 'RelDiff_', 'T+S+R'), ('_ROUGE_US', 'None', '_', 'T+S+R')]), ('__BE', [('__BE', 'None', 'CumSum_', 'T+S+R'), ('__BE', 'None', 'Diff_', 'T+S+R'), ('__BE', 'None', 'RelDiff_', 'T+S+R'), ('__BE', 'None', '_', 'T+S+R')]), ('__CN', [('__CN', 'None', 'CumSum_', 'T+S+R'), ('__CN', 'None', 'Diff_', 'T+S+R'), ('__CN', 'None', 'RelDiff_', 'T+S+R'), ('__CN', 'None', '_', 'T+S+R')]), ('__DE', [('__DE', 'None', 'CumSum_', 'T+S+R'), ('__DE', 'None', 'Diff_', 'T+S+R'), ('__DE', 'None', 'RelDiff_', 'T+S+R'), ('__DE', 'None', '_', 'T+S+R')]), ('__GB', [('__GB', 'None', 'CumSum_', 'T+S+R'), ('__GB', 'None', 'Diff_', 'T+S+R'), ('__GB', 'None', 'RelDiff_', 'T+S+R'), ('__GB', 'None', '_', 'T+S+R')]), ('__US', [('__US', 'None', 'CumSum_', 'T+S+R'), ('__US', 'None', 'Diff_', 'T+S+R'), ('__US', 'None', 'RelDiff_', 'T+S+R'), ('__US', 'None', '_', 'T+S+R')]), ('__', [('__', 'None', 'CumSum_', 'T+S+R'), ('__', 'None', 'Diff_', 'T+S+R'), ('__', 'None', 'RelDiff_', 'T+S+R'), ('__', 'None', '_', 'T+S+R')])], 'Cores': 8})) -INFO:pyaf.hierarchical:TRAINING_HIERARCHICAL_MODEL_COMPUTE_TOP_DOWN_HISTORICAL_PROPORTIONS -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Horizon': 1})) -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Month_Normalized_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Month_Normalized_^3_x', 'Month_Normalized_x', 'Month_Normalized_^2_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 4.707, ('FORECASTING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Horizon': 1})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD -INFO:pyaf.hierarchical:STRUCTURE [0, 1, 2, 3] -INFO:pyaf.hierarchical:DATASET_COLUMNS Index(['Month', 'ALSACE_BLANC_BE', 'ALSACE_BLANC_BE_Forecast', - 'ALSACE_BLANC_BE_Forecast_Lower_Bound', - 'ALSACE_BLANC_BE_Forecast_Upper_Bound', 'ALSACE_BLANC_CN', - 'ALSACE_BLANC_CN_Forecast', 'ALSACE_BLANC_CN_Forecast_Lower_Bound', - 'ALSACE_BLANC_CN_Forecast_Upper_Bound', 'ALSACE_BLANC_DE', - ... - '_ROUGE_CN_BU_Forecast', '_ROUGE_DE_BU_Forecast', - '_ROUGE_GB_BU_Forecast', '_ROUGE_US_BU_Forecast', '__BE_BU_Forecast', - '__CN_BU_Forecast', '__DE_BU_Forecast', '__GB_BU_Forecast', - '__US_BU_Forecast', '___BU_Forecast'], - dtype='object', length=181) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (0, ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (1, ['_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (2, ['__BE', '__CN', '__DE', '__GB', '__US']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (3, ['__']) -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'ALSACE_BLANC_BE_BU_Forecast', 'Length': 36, 'MAPE': 0.1418, 'RMSE': 199577.56080021942, 'MAE': 165591.68055555556, 'SMAPE': 0.1379, 'ErrorMean': 0.0, 'ErrorStdDev': 199577.56080021942, 'R2': 0.0, 'Pearson': 0.0, 'MedAE': 158285.5, 'LnQ': 1.0001702376738262} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'ALSACE_BLANC_BE_BU_Forecast', 'Length': 9, 'MAPE': 0.2979, 'RMSE': 444837.29072987556, 'MAE': 326942.97222222225, 'SMAPE': 0.2631, 'ErrorMean': -79348.75, 'ErrorStdDev': 437703.08554696455, 'R2': -0.032864040938387795, 'Pearson': 0.0, 'MedAE': 315235.25, 'LnQ': 1.227281916379798} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'ALSACE_BLANC_CN_BU_Forecast', 'Length': 36, 'MAPE': 0.4822, 'RMSE': 55521.03276626425, 'MAE': 43377.77017958028, 'SMAPE': 0.3612, 'ErrorMean': 4.0421986745463475e-13, 'ErrorStdDev': 55521.03276626425, 'R2': 0.17957416327028564, 'Pearson': 0.4471209402104798, 'MedAE': 38736.72961921899, 'LnQ': 8.69668235423797} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'ALSACE_BLANC_CN_BU_Forecast', 'Length': 9, 'MAPE': 0.5266, 'RMSE': 86337.67923847705, 'MAE': 59144.61731272083, 'SMAPE': 0.5076, 'ErrorMean': -35937.344601537996, 'ErrorStdDev': 78502.87968779527, 'R2': -0.08848106932590061, 'Pearson': 0.0, 'MedAE': 32436.963272436733, 'LnQ': 4.049199383465401} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'ALSACE_BLANC_DE_BU_Forecast', 'Length': 36, 'MAPE': 0.3037, 'RMSE': 381643.9708516124, 'MAE': 239057.80555555556, 'SMAPE': 0.3884, 'ErrorMean': -235745.16666666666, 'ErrorStdDev': 300127.2011675914, 'R2': -0.5439845652964985, 'Pearson': 0.4222538037199403, 'MedAE': 162350.11111111112, 'LnQ': 9.890700967675714} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'ALSACE_BLANC_DE_BU_Forecast', 'Length': 9, 'MAPE': 0.1906, 'RMSE': 144769.4922736975, 'MAE': 112843.61111111117, 'SMAPE': 0.2201, 'ErrorMean': -112843.61111111117, 'ErrorStdDev': 90689.1687280707, 'R2': -1.6785920899742903, 'Pearson': 0.0, 'MedAE': 108176.55555555562, 'LnQ': 0.6610701709434534} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'ALSACE_BLANC_GB_BU_Forecast', 'Length': 36, 'MAPE': 0.2964, 'RMSE': 127746.35430699537, 'MAE': 106249.85185185184, 'SMAPE': 0.264, 'ErrorMean': -2.5870071517096624e-11, 'ErrorStdDev': 127746.35430699537, 'R2': 0.0, 'Pearson': 0.0, 'MedAE': 103020.0, 'LnQ': 3.9433584231776666} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'ALSACE_BLANC_GB_BU_Forecast', 'Length': 9, 'MAPE': 0.1402, 'RMSE': 66480.16663925201, 'MAE': 55017.46913580247, 'SMAPE': 0.1358, 'ErrorMean': -731.2222222222481, 'ErrorStdDev': 66476.1451232278, 'R2': -0.00012099491204886625, 'Pearson': 0.0, 'MedAE': 51085.77777777775, 'LnQ': 0.2468630785700593} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'ALSACE_BLANC_US_BU_Forecast', 'Length': 36, 'MAPE': 0.2594, 'RMSE': 200033.04802258493, 'MAE': 159998.9709224591, 'SMAPE': 0.2404, 'ErrorMean': -31569.624864154895, 'ErrorStdDev': 197526.14785678958, 'R2': -0.09119641790951571, 'Pearson': 0.1358236738767651, 'MedAE': 132505.91277637676, 'LnQ': 3.5301758088606325} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'ALSACE_BLANC_US_BU_Forecast', 'Length': 9, 'MAPE': 0.2382, 'RMSE': 202172.36774058035, 'MAE': 164439.516326135, 'SMAPE': 0.2489, 'ErrorMean': -54478.8395521467, 'ErrorStdDev': 194693.91957347796, 'R2': -0.4245641427999316, 'Pearson': 0.0, 'MedAE': 166397.71773263707, 'LnQ': 0.8097046487375348} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BEAUJOLAIS_ROUGE_BE_BU_Forecast', 'Length': 36, 'MAPE': 0.7708, 'RMSE': 120477.02984542736, 'MAE': 101271.42732198004, 'SMAPE': 0.4981, 'ErrorMean': 57748.86668716525, 'ErrorStdDev': 105734.49350483506, 'R2': -0.3035335451187118, 'Pearson': 0.19564136131173504, 'MedAE': 104677.83011869385, 'LnQ': 14.372193824227013} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BEAUJOLAIS_ROUGE_BE_BU_Forecast', 'Length': 9, 'MAPE': 0.4232, 'RMSE': 104653.5426991158, 'MAE': 78438.86991009717, 'SMAPE': 0.4323, 'ErrorMean': -13613.81453827593, 'ErrorStdDev': 103764.29083838563, 'R2': 0.10318480342304137, 'Pearson': 0.0, 'MedAE': 66156.15527719562, 'LnQ': 2.664915499571408} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BEAUJOLAIS_ROUGE_CN_BU_Forecast', 'Length': 36, 'MAPE': 1.417, 'RMSE': 360751.68783161486, 'MAE': 174190.987654321, 'SMAPE': 1.6099, 'ErrorMean': -66013.9012345679, 'ErrorStdDev': 354660.3235733476, 'R2': -11.986728036714071, 'Pearson': -0.06045343752764637, 'MedAE': 89717.0, 'LnQ': 240.6539048490772} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BEAUJOLAIS_ROUGE_CN_BU_Forecast', 'Length': 9, 'MAPE': 0.8131, 'RMSE': 183891.21582481253, 'MAE': 138864.5, 'SMAPE': 1.5054, 'ErrorMean': -138864.5, 'ErrorStdDev': 120551.3579238234, 'R2': -1.3269001891985233, 'Pearson': 0.0, 'MedAE': 91177.5, 'LnQ': 61.77565887889781} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BEAUJOLAIS_ROUGE_DE_BU_Forecast', 'Length': 36, 'MAPE': 0.6182, 'RMSE': 268908.8411572105, 'MAE': 121252.86111111111, 'SMAPE': 0.5239, 'ErrorMean': -90871.33333333333, 'ErrorStdDev': 253089.63951678487, 'R2': -0.1235609513710596, 'Pearson': 0.17563597266024822, 'MedAE': 35710.75, 'LnQ': 30.169890508826057} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BEAUJOLAIS_ROUGE_DE_BU_Forecast', 'Length': 9, 'MAPE': 0.6144, 'RMSE': 155871.73582628762, 'MAE': 101230.22222222222, 'SMAPE': 0.6012, 'ErrorMean': -55130.88888888889, 'ErrorStdDev': 145796.375537326, 'R2': -0.1492885450742618, 'Pearson': 0.0, 'MedAE': 42501.5, 'LnQ': 5.692548113948143} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BEAUJOLAIS_ROUGE_GB_BU_Forecast', 'Length': 36, 'MAPE': 0.7102, 'RMSE': 568068.8334224873, 'MAE': 414434.76689684176, 'SMAPE': 0.4846, 'ErrorMean': 9927.16628304145, 'ErrorStdDev': 567982.0867558891, 'R2': -0.6146056831972657, 'Pearson': 0.17032695714559062, 'MedAE': 298896.99999999965, 'LnQ': 17.827099910240765} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BEAUJOLAIS_ROUGE_GB_BU_Forecast', 'Length': 9, 'MAPE': 0.3365, 'RMSE': 484042.82390307094, 'MAE': 327908.4444444452, 'SMAPE': 0.3646, 'ErrorMean': -74518.93394713191, 'ErrorStdDev': 478272.2904951136, 'R2': -0.16407903839322757, 'Pearson': 0.0, 'MedAE': 181747.99999999604, 'LnQ': 3.305584774308686} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BEAUJOLAIS_ROUGE_US_BU_Forecast', 'Length': 36, 'MAPE': 0.5762, 'RMSE': 867034.3960889542, 'MAE': 582255.0717515774, 'SMAPE': 0.4781, 'ErrorMean': 1.9402553637822468e-11, 'ErrorStdDev': 867034.3960889542, 'R2': 0.0028471423817205688, 'Pearson': 0.05534550225359949, 'MedAE': 437061.3810473102, 'LnQ': 12.735284617727174} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BEAUJOLAIS_ROUGE_US_BU_Forecast', 'Length': 9, 'MAPE': 0.2867, 'RMSE': 774435.6013471646, 'MAE': 387408.120254391, 'SMAPE': 0.2956, 'ErrorMean': -153564.98378074204, 'ErrorStdDev': 759057.5053251004, 'R2': -0.02749876936315787, 'Pearson': 0.0, 'MedAE': 101991.21927769063, 'LnQ': 2.1361959218498803} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_BLANC_BE_BU_Forecast', 'Length': 36, 'MAPE': 0.6982, 'RMSE': 722992.4725423388, 'MAE': 334245.7199074074, 'SMAPE': 0.6407, 'ErrorMean': -106833.66898148147, 'ErrorStdDev': 715055.7198742206, 'R2': -71.09771187407429, 'Pearson': -0.027778234472869992, 'MedAE': 223302.0, 'LnQ': 20.637668576044653} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_BLANC_BE_BU_Forecast', 'Length': 9, 'MAPE': 0.3043, 'RMSE': 217678.8872743519, 'MAE': 153477.44444444444, 'SMAPE': 0.3995, 'ErrorMean': -153477.44444444444, 'ErrorStdDev': 154365.70866550144, 'R2': -0.9885245425794706, 'Pearson': 0.0, 'MedAE': 95902.0, 'LnQ': 2.6951301452780396} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_BLANC_CN_BU_Forecast', 'Length': 36, 'MAPE': 0.4861, 'RMSE': 236751.57395505198, 'MAE': 196901.17592592593, 'SMAPE': 0.4008, 'ErrorMean': 1.034802860683865e-10, 'ErrorStdDev': 236751.57395505195, 'R2': 0.0, 'Pearson': 0.0, 'MedAE': 189473.83333333343, 'LnQ': 8.600680576750259} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_BLANC_CN_BU_Forecast', 'Length': 9, 'MAPE': 0.306, 'RMSE': 477151.9543347897, 'MAE': 234114.8703703704, 'SMAPE': 0.3129, 'ErrorMean': -116613.27777777765, 'ErrorStdDev': 462682.75413228024, 'R2': -0.06352276318980365, 'Pearson': 0.0, 'MedAE': 66245.16666666657, 'LnQ': 2.44225343919888} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_BLANC_DE_BU_Forecast', 'Length': 36, 'MAPE': 0.3966, 'RMSE': 270676.3073877788, 'MAE': 178217.47222222222, 'SMAPE': 0.3632, 'ErrorMean': -18718.194444444445, 'ErrorStdDev': 270028.31810353394, 'R2': -0.18936319314386085, 'Pearson': 0.35598801581887307, 'MedAE': 78177.5, 'LnQ': 9.037320793442333} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_BLANC_DE_BU_Forecast', 'Length': 9, 'MAPE': 0.2533, 'RMSE': 201387.2590557804, 'MAE': 97102.88888888889, 'SMAPE': 0.1866, 'ErrorMean': 76439.11111111111, 'ErrorStdDev': 186316.64016545383, 'R2': -13.060718941617052, 'Pearson': 0.0, 'MedAE': 31658.0, 'LnQ': 0.8857663405603857} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_BLANC_GB_BU_Forecast', 'Length': 36, 'MAPE': 0.4892, 'RMSE': 599799.3435682083, 'MAE': 511373.74064422614, 'SMAPE': 0.6864, 'ErrorMean': -511044.2545988388, 'ErrorStdDev': 313995.25854122493, 'R2': -2.837556079240552, 'Pearson': 0.08973343306318374, 'MedAE': 494168.0109198079, 'LnQ': 24.39220337983192} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_BLANC_GB_BU_Forecast', 'Length': 9, 'MAPE': 0.1116, 'RMSE': 88616.28897110966, 'MAE': 65509.45707904265, 'SMAPE': 0.1006, 'ErrorMean': 50385.18732073714, 'ErrorStdDev': 72898.41952789815, 'R2': 0.0587686836895428, 'Pearson': 0.0, 'MedAE': 41655.345844400814, 'LnQ': 0.18058336276374282} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_BLANC_US_BU_Forecast', 'Length': 36, 'MAPE': 0.5187, 'RMSE': 751151.8075714359, 'MAE': 568550.4357534433, 'SMAPE': 0.8124, 'ErrorMean': -564459.9367501306, 'ErrorStdDev': 495594.6103640294, 'R2': -2.3217604143640402, 'Pearson': -0.238717429201654, 'MedAE': 453331.26332439034, 'LnQ': inf} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_BLANC_US_BU_Forecast', 'Length': 9, 'MAPE': 0.1983, 'RMSE': 219149.40905429173, 'MAE': 161841.43942156024, 'SMAPE': 0.2, 'ErrorMean': -80487.9470564558, 'ErrorStdDev': 203833.64262918534, 'R2': 0.08649322740783916, 'Pearson': 0.0, 'MedAE': 125047.80902375502, 'LnQ': 0.5895833711832634} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_ROUGE_BE_BU_Forecast', 'Length': 36, 'MAPE': 0.1233, 'RMSE': 893525.8047197589, 'MAE': 619164.3648728966, 'SMAPE': 0.1202, 'ErrorMean': -7.761021455128987e-11, 'ErrorStdDev': 893525.804719759, 'R2': 0.33918913778601834, 'Pearson': 0.6247287470715048, 'MedAE': 519625.759507847, 'LnQ': 0.9773542661318251} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_ROUGE_BE_BU_Forecast', 'Length': 9, 'MAPE': 0.1779, 'RMSE': 870264.1896522646, 'MAE': 749196.9673755659, 'SMAPE': 0.1876, 'ErrorMean': -355327.10652493, 'ErrorStdDev': 794419.5410233398, 'R2': 0.1549869645230646, 'Pearson': 0.0, 'MedAE': 651411.6498942822, 'LnQ': 0.3971233878012344} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_ROUGE_CN_BU_Forecast', 'Length': 36, 'MAPE': 0.2965, 'RMSE': 4341864.454202424, 'MAE': 3457985.0984571697, 'SMAPE': 0.3248, 'ErrorMean': -1883439.0037183128, 'ErrorStdDev': 3912089.5258083087, 'R2': -0.9169944456094827, 'Pearson': -0.19408140972896756, 'MedAE': 2826187.804410982, 'LnQ': 5.681186632971126} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_ROUGE_CN_BU_Forecast', 'Length': 9, 'MAPE': 0.2431, 'RMSE': 2712945.66113926, 'MAE': 2095071.2871508482, 'SMAPE': 0.1984, 'ErrorMean': 598752.889737284, 'ErrorStdDev': 2646047.8335293923, 'R2': 0.24026564370521597, 'Pearson': 0.0, 'MedAE': 1591622.6505130827, 'LnQ': 0.7337451269271154} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_ROUGE_DE_BU_Forecast', 'Length': 36, 'MAPE': 0.337, 'RMSE': 2172921.2151209507, 'MAE': 1699796.3050877494, 'SMAPE': 0.2917, 'ErrorMean': -91240.87311386198, 'ErrorStdDev': 2171004.7697313167, 'R2': -0.046690116723479225, 'Pearson': -0.298882138178422, 'MedAE': 1361157.460387528, 'LnQ': 5.20822712158209} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_ROUGE_DE_BU_Forecast', 'Length': 9, 'MAPE': 0.272, 'RMSE': 1186136.6973808925, 'MAE': 910725.4387466399, 'SMAPE': 0.2118, 'ErrorMean': 677534.444054859, 'ErrorStdDev': 973584.7893187959, 'R2': -0.255990717618118, 'Pearson': 0.0, 'MedAE': 562244.9510739306, 'LnQ': 0.8373354139586265} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_ROUGE_GB_BU_Forecast', 'Length': 36, 'MAPE': 0.3547, 'RMSE': 4522958.716730319, 'MAE': 3622128.5, 'SMAPE': 0.3104, 'ErrorMean': 275448.1111111111, 'ErrorStdDev': 4514563.532760625, 'R2': 0.6230681985385662, 'Pearson': 0.8098760167727039, 'MedAE': 3389606.5, 'LnQ': 5.664611466930085} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_ROUGE_GB_BU_Forecast', 'Length': 9, 'MAPE': 0.1592, 'RMSE': 1259434.9100598427, 'MAE': 951526.7777777778, 'SMAPE': 0.1541, 'ErrorMean': -18088.777777777777, 'ErrorStdDev': 1259305.0022913236, 'R2': -0.6548872013161662, 'Pearson': 0.0, 'MedAE': 759107.0, 'LnQ': 0.37696372621063096} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BORDEAUX_ROUGE_US_BU_Forecast', 'Length': 36, 'MAPE': 0.1584, 'RMSE': 1471850.6026004446, 'MAE': 1161093.0378946168, 'SMAPE': 0.154, 'ErrorMean': 0.0, 'ErrorStdDev': 1471850.6026004446, 'R2': 0.2595421691639791, 'Pearson': 0.5257410910524861, 'MedAE': 985239.0831511058, 'LnQ': 1.3321995797745096} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BORDEAUX_ROUGE_US_BU_Forecast', 'Length': 9, 'MAPE': 0.2095, 'RMSE': 1423096.364681896, 'MAE': 1234635.7322412622, 'SMAPE': 0.1938, 'ErrorMean': 13359.461174891538, 'ErrorStdDev': 1423033.656653259, 'R2': -0.027475821531138145, 'Pearson': 0.0, 'MedAE': 1027185.6522214338, 'LnQ': 0.4869588300300327} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_BLANC_BE_BU_Forecast', 'Length': 36, 'MAPE': 0.2215, 'RMSE': 766218.6333087019, 'MAE': 380695.8865740741, 'SMAPE': 0.1945, 'ErrorMean': -106833.66898148147, 'ErrorStdDev': 758734.1834934093, 'R2': -9.918438932326524, 'Pearson': -0.06460058509405732, 'MedAE': 267881.75, 'LnQ': 3.018165813585594} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_BLANC_BE_BU_Forecast', 'Length': 9, 'MAPE': 0.2677, 'RMSE': 584673.2980963303, 'MAE': 450998.5833333333, 'SMAPE': 0.2744, 'ErrorMean': -232826.19444444444, 'ErrorStdDev': 536315.9784001947, 'R2': -0.1884613107072759, 'Pearson': 0.0, 'MedAE': 400016.75, 'LnQ': 1.0472511617875822} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_BLANC_CN_BU_Forecast', 'Length': 36, 'MAPE': 0.3729, 'RMSE': 239633.44735495193, 'MAE': 197741.4526932817, 'SMAPE': 0.3241, 'ErrorMean': 9.701276818911235e-11, 'ErrorStdDev': 239633.44735495193, 'R2': 0.0611102566738716, 'Pearson': 0.44259999637552605, 'MedAE': 169844.68414242938, 'LnQ': 5.655747989882534} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_BLANC_CN_BU_Forecast', 'Length': 9, 'MAPE': 0.2459, 'RMSE': 470215.32387996995, 'MAE': 235096.11020868423, 'SMAPE': 0.2725, 'ErrorMean': -152550.6223793157, 'ErrorStdDev': 444781.69749128434, 'R2': -0.18517785797926734, 'Pearson': 0.0, 'MedAE': 70762.57081187086, 'LnQ': 2.0463708688901074} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_BLANC_DE_BU_Forecast', 'Length': 36, 'MAPE': 0.2515, 'RMSE': 516762.08294615545, 'MAE': 317171.4814814815, 'SMAPE': 0.2982, 'ErrorMean': -254463.36111111115, 'ErrorStdDev': 449768.2161101265, 'R2': -0.0733863994816153, 'Pearson': 0.4338536707538523, 'MedAE': 185443.25, 'LnQ': 5.855786457062251} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_BLANC_DE_BU_Forecast', 'Length': 9, 'MAPE': 0.1045, 'RMSE': 121463.47982179142, 'MAE': 97239.96913580252, 'SMAPE': 0.108, 'ErrorMean': -36404.50000000004, 'ErrorStdDev': 115879.63285309775, 'R2': 0.13720970855142178, 'Pearson': 0.0, 'MedAE': 103260.55555555562, 'LnQ': 0.14860167921019024} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_BLANC_GB_BU_Forecast', 'Length': 36, 'MAPE': 0.343, 'RMSE': 631094.7494387389, 'MAE': 523807.2339214092, 'SMAPE': 0.4354, 'ErrorMean': -511044.2545988389, 'ErrorStdDev': 370289.5523919919, 'R2': -1.840442082318531, 'Pearson': 0.1771188546523654, 'MedAE': 501708.66210276634, 'LnQ': 9.566436625678874} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_BLANC_GB_BU_Forecast', 'Length': 9, 'MAPE': 0.103, 'RMSE': 129498.394020257, 'MAE': 99615.90935516811, 'SMAPE': 0.095, 'ErrorMean': 49653.965098514884, 'ErrorStdDev': 119600.65971315207, 'R2': 0.20399167776778915, 'Pearson': 0.0, 'MedAE': 98956.89189990412, 'LnQ': 0.15202171607900497} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_BLANC_US_BU_Forecast', 'Length': 36, 'MAPE': 0.3573, 'RMSE': 823556.1482700823, 'MAE': 648218.9015814109, 'SMAPE': 0.4615, 'ErrorMean': -596029.5616142855, 'ErrorStdDev': 568325.1631199665, 'R2': -1.7905441290701969, 'Pearson': -0.07919346572797471, 'MedAE': 583582.8728686456, 'LnQ': 12.59718981772753} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_BLANC_US_BU_Forecast', 'Length': 9, 'MAPE': 0.2082, 'RMSE': 402642.08348319604, 'MAE': 315007.8106450903, 'SMAPE': 0.2149, 'ErrorMean': -134966.7866086025, 'ErrorStdDev': 379347.6161836752, 'R2': -0.19156710464396376, 'Pearson': 0.0, 'MedAE': 245602.2954383106, 'LnQ': 0.6156240780127763} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_ROUGE_BE_BU_Forecast', 'Length': 36, 'MAPE': 0.127, 'RMSE': 917920.8090934898, 'MAE': 651370.7880487689, 'SMAPE': 0.1222, 'ErrorMean': 57748.86668716519, 'ErrorStdDev': 916102.4397758117, 'R2': 0.3285906208373156, 'Pearson': 0.6221793702383768, 'MedAE': 520525.7131103757, 'LnQ': 0.9948743795334258} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_ROUGE_BE_BU_Forecast', 'Length': 9, 'MAPE': 0.1711, 'RMSE': 891641.1932844018, 'MAE': 755198.0006779401, 'SMAPE': 0.1802, 'ErrorMean': -368940.9210632059, 'ErrorStdDev': 811730.629166268, 'R2': 0.20484955866076193, 'Pearson': 0.0, 'MedAE': 695408.6811332218, 'LnQ': 0.3798818557835496} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_ROUGE_CN_BU_Forecast', 'Length': 36, 'MAPE': 0.3019, 'RMSE': 4416350.938003938, 'MAE': 3557639.6694448236, 'SMAPE': 0.3322, 'ErrorMean': -1949452.904952881, 'ErrorStdDev': 3962800.64840247, 'R2': -0.938464892562028, 'Pearson': -0.20297279466936857, 'MedAE': 2805526.682823318, 'LnQ': 5.796101329560471} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_ROUGE_CN_BU_Forecast', 'Length': 9, 'MAPE': 0.2461, 'RMSE': 2767322.0024369773, 'MAE': 2178352.1204841817, 'SMAPE': 0.2031, 'ErrorMean': 459888.38973728404, 'ErrorStdDev': 2728841.0972712664, 'R2': 0.24792323213567213, 'Pearson': 0.0, 'MedAE': 1564174.5669167805, 'LnQ': 0.7388535296392079} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_ROUGE_DE_BU_Forecast', 'Length': 36, 'MAPE': 0.3415, 'RMSE': 2271457.519355812, 'MAE': 1791280.7495321939, 'SMAPE': 0.2987, 'ErrorMean': -182112.20644719532, 'ErrorStdDev': 2264145.4031269704, 'R2': -0.049819532147952206, 'Pearson': -0.30565982367958683, 'MedAE': 1632304.9973434452, 'LnQ': 5.348291763976484} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_ROUGE_DE_BU_Forecast', 'Length': 9, 'MAPE': 0.2572, 'RMSE': 1175679.1984854098, 'MAE': 922369.2165244176, 'SMAPE': 0.2063, 'ErrorMean': 622403.5551659701, 'ErrorStdDev': 997414.3533497286, 'R2': -0.15715743878686683, 'Pearson': 0.0, 'MedAE': 938112.4510739306, 'LnQ': 0.7504526082635529} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_ROUGE_GB_BU_Forecast', 'Length': 36, 'MAPE': 0.3692, 'RMSE': 4778104.177064312, 'MAE': 3912505.2668968416, 'SMAPE': 0.3185, 'ErrorMean': 285375.2773941528, 'ErrorStdDev': 4769574.454595676, 'R2': 0.5841842582910612, 'Pearson': 0.7894205244187072, 'MedAE': 4071414.500000001, 'LnQ': 5.993557769394455} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_ROUGE_GB_BU_Forecast', 'Length': 9, 'MAPE': 0.1598, 'RMSE': 1437873.296534361, 'MAE': 1077599.2672804664, 'SMAPE': 0.1538, 'ErrorMean': -92607.71172490965, 'ErrorStdDev': 1434887.9498468398, 'R2': -0.3009914547397603, 'Pearson': 0.0, 'MedAE': 755169.2027621008, 'LnQ': 0.3806687940288728} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_ROUGE_US_BU_Forecast', 'Length': 36, 'MAPE': 0.1778, 'RMSE': 2010472.2184301948, 'MAE': 1542241.8930168024, 'SMAPE': 0.1749, 'ErrorMean': 0.0, 'ErrorStdDev': 2010472.2184301948, 'R2': 0.20014951157568373, 'Pearson': 0.4778330632863624, 'MedAE': 1094759.5551422066, 'LnQ': 1.7013664022460702} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_ROUGE_US_BU_Forecast', 'Length': 9, 'MAPE': 0.2227, 'RMSE': 1823312.7813095062, 'MAE': 1563721.0082521867, 'SMAPE': 0.2091, 'ErrorMean': -140205.52260585048, 'ErrorStdDev': 1817914.1646176332, 'R2': 0.03926511511834485, 'Pearson': 0.0, 'MedAE': 1094836.2595403055, 'LnQ': 0.5553200798876182} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__BE_BU_Forecast', 'Length': 36, 'MAPE': 0.1067, 'RMSE': 990961.0895052799, 'MAE': 735508.7066518752, 'SMAPE': 0.1042, 'ErrorMean': 57748.86668716508, 'ErrorStdDev': 989276.9831093006, 'R2': 0.32694510143000965, 'Pearson': 0.623512054645216, 'MedAE': 562213.2752844794, 'LnQ': 0.6738004353136835} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__BE_BU_Forecast', 'Length': 9, 'MAPE': 0.1677, 'RMSE': 1168437.013401952, 'MAE': 996528.7794292242, 'SMAPE': 0.1674, 'ErrorMean': -257601.42912931048, 'ErrorStdDev': 1139687.0438845085, 'R2': 0.3353065837842645, 'Pearson': 0.0, 'MedAE': 1019357.0152692255, 'LnQ': 0.34289572130136686} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__CN_BU_Forecast', 'Length': 36, 'MAPE': 0.2936, 'RMSE': 4506653.669903202, 'MAE': 3639379.8762349472, 'SMAPE': 0.3208, 'ErrorMean': -1949452.904952881, 'ErrorStdDev': 4063195.869241695, 'R2': -0.8918415437230038, 'Pearson': -0.20757466149866335, 'MedAE': 3035784.682823318, 'LnQ': 5.3894789554488485} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__CN_BU_Forecast', 'Length': 9, 'MAPE': 0.2216, 'RMSE': 2786297.681756093, 'MAE': 2102090.225422453, 'SMAPE': 0.1843, 'ErrorMean': 343913.0008483955, 'ErrorStdDev': 2764991.612863741, 'R2': 0.22956810976964703, 'Pearson': 0.0, 'MedAE': 1801238.8110193424, 'LnQ': 0.6595564549390834} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__DE_BU_Forecast', 'Length': 36, 'MAPE': 0.2959, 'RMSE': 2400898.8916825736, 'MAE': 1871375.110643305, 'SMAPE': 0.2637, 'ErrorMean': -202526.12311386198, 'ErrorStdDev': 2392341.6682278225, 'R2': 0.10856873128620259, 'Pearson': 0.4192390504097975, 'MedAE': 1625194.4713250417, 'LnQ': 4.183128933875492} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__DE_BU_Forecast', 'Length': 9, 'MAPE': 0.213, 'RMSE': 1208214.0907442411, 'MAE': 949802.0013163742, 'SMAPE': 0.1775, 'ErrorMean': 691548.5551659701, 'ErrorStdDev': 990727.9570703517, 'R2': -0.17955899291507182, 'Pearson': 0.0, 'MedAE': 787093.4510739306, 'LnQ': 0.5396995400073371} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__GB_BU_Forecast', 'Length': 36, 'MAPE': 0.3254, 'RMSE': 4720501.105678403, 'MAE': 3987217.043303576, 'SMAPE': 0.3005, 'ErrorMean': -347421.4304739343, 'ErrorStdDev': 4707698.9111835165, 'R2': 0.612519802154984, 'Pearson': 0.7992263375339581, 'MedAE': 3992231.7612494277, 'LnQ': 4.918306084173231} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__GB_BU_Forecast', 'Length': 9, 'MAPE': 0.147, 'RMSE': 1515989.4581055497, 'MAE': 1151624.052562129, 'SMAPE': 0.1423, 'ErrorMean': -75525.5194743225, 'ErrorStdDev': 1514106.9754133266, 'R2': -0.2606056900435587, 'Pearson': 0.0, 'MedAE': 749668.7725108769, 'LnQ': 0.315789880817213} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__US_BU_Forecast', 'Length': 36, 'MAPE': 0.1507, 'RMSE': 2404792.927754476, 'MAE': 1667331.001182893, 'SMAPE': 0.1578, 'ErrorMean': -654154.9722222224, 'ErrorStdDev': 2314111.1247506863, 'R2': 0.11722268647728529, 'Pearson': 0.49765133793606114, 'MedAE': 968428.6149307964, 'LnQ': 1.6372261051411214} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__US_BU_Forecast', 'Length': 9, 'MAPE': 0.2084, 'RMSE': 2043968.8168270802, 'MAE': 1765986.786029965, 'SMAPE': 0.1998, 'ErrorMean': -342542.6337169619, 'ErrorStdDev': 2015061.5544562757, 'R2': 0.0028799593535877577, 'Pearson': 0.0, 'MedAE': 2065082.8134136405, 'LnQ': 0.5018917823799788} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '___BU_Forecast', 'Length': 36, 'MAPE': 0.1353, 'RMSE': 8650747.204800617, 'MAE': 7039450.073907834, 'SMAPE': 0.1401, 'ErrorMean': -3181714.7014930937, 'ErrorStdDev': 8044384.299601084, 'R2': 0.40734725584501175, 'Pearson': 0.6989412555677328, 'MedAE': 7196761.612522729, 'LnQ': 1.0184321939105232} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '___BU_Forecast', 'Length': 9, 'MAPE': 0.1358, 'RMSE': 6120430.350500554, 'MAE': 4831575.07718693, 'SMAPE': 0.1241, 'ErrorMean': 1029541.1774352533, 'ErrorStdDev': 6033217.43676569, 'R2': 0.26426646586892844, 'Pearson': 0.0, 'MedAE': 3603648.10669633, 'LnQ': 0.24734126004212809} -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 25.093, 'HIERARCHICAL_TRAINING') -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_PLOTTING') -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.312, 'HIERARCHICAL_PLOTTING') -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='ALSACE_BLANC_BE' Length=46 Min=547748 Max=2166585 Mean=1210707.7826086956 StdDev=275212.5886479406 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_ALSACE_BLANC_BE' Min=0.0 Max=1.0 Mean=0.4095284346779174 StdDev=0.17000636175720013 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_ALSACE_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_ALSACE_BLANC_BE_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_ALSACE_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_ALSACE_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1418 MAPE_Forecast=0.2979 MAPE_Test=0.7568 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.1379 SMAPE_Forecast=0.2631 SMAPE_Test=0.549 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.6875 MASE_Forecast=0.7634 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=20197.779571428575 CRPS_Forecast=42154.530733333326 CRPS_Test=259859.125 -INFO:pyaf.std:MODEL_L1 L1_Fit=165591.68055555556 L1_Forecast=326942.97222222225 L1_Test=519718.25 -INFO:pyaf.std:MODEL_L2 L2_Fit=199577.56080021942 L2_Forecast=444837.29072987556 L2_Test=519718.25 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=1.0001702376738262 LnQ_Forecast=1.227281916379798 LnQ_Test=0.3175030496347918 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=158285.5 MedAE_Forecast=315235.25 MedAE_Test=519718.25 -INFO:pyaf.std:MODEL_COMPLEXITY 0.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _ALSACE_BLANC_BE_ConstantTrend 0.40691758960290625 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _ALSACE_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE None 0.0029596864909809117 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='ALSACE_BLANC_CN' Length=46 Min=19546 Max=317661 Mean=123176.23913043478 StdDev=65440.68791601353 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_ALSACE_BLANC_CN' Min=0.0 Max=1.0 Mean=0.34761833228933403 StdDev=0.21951491174886711 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [PolyTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL '_ALSACE_BLANC_CN_PolyTrend' [PolyTrend] -INFO:pyaf.std:CYCLE_DETAIL '_ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.4822 MAPE_Forecast=0.5266 MAPE_Test=0.2293 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3612 SMAPE_Forecast=0.5076 SMAPE_Test=0.259 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.65 MASE_Forecast=0.5626 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=7249.983362169723 CRPS_Forecast=9933.55593387993 CRPS_Test=13019.814295406919 -INFO:pyaf.std:MODEL_L1 L1_Fit=43377.77017958028 L1_Forecast=59144.61731272083 L1_Test=26039.628590813838 -INFO:pyaf.std:MODEL_L2 L2_Fit=55521.03276626425 L2_Forecast=86337.67923847705 L2_Test=26039.628590813838 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=8.69668235423797 LnQ_Forecast=4.049199383465401 LnQ_Test=0.06782154198803243 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=38736.72961921899 MedAE_Forecast=32436.963272436733 MedAE_Test=26039.628590813838 -INFO:pyaf.std:MODEL_COMPLEXITY 12.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:POLYNOMIAL_RIDGE_TREND PolyTrend (0.3905445490642428, array([-0.05877648, -0.03342256, -0.00427738])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE None -0.03568190686026236 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.14207615567664317 -INFO:pyaf.std:AR_MODEL_COEFF 2 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.11798364455234281 -INFO:pyaf.std:AR_MODEL_COEFF 3 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag7 -0.08041754688137069 -INFO:pyaf.std:AR_MODEL_COEFF 4 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.07624461274705897 -INFO:pyaf.std:AR_MODEL_COEFF 5 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.06148015567605241 -INFO:pyaf.std:AR_MODEL_COEFF 6 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag10 0.05060491016157863 -INFO:pyaf.std:AR_MODEL_COEFF 7 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag6 0.041865831457058404 -INFO:pyaf.std:AR_MODEL_COEFF 8 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag11 0.03949736730044186 -INFO:pyaf.std:AR_MODEL_COEFF 9 _ALSACE_BLANC_CN_PolyTrend_residue_bestCycle_byMAPE_residue_Lag5 0.02039244861015814 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='ALSACE_BLANC_DE' Length=46 Min=313150 Max=1871515 Mean=603639.3260869565 StdDev=277881.61803232547 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_ALSACE_BLANC_DE' Min=-0.7082166244750107 Max=0.7010693900337854 Mean=0.0008953363747037549 StdDev=0.18735394573760367 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_ALSACE_BLANC_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'Diff_ALSACE_BLANC_DE_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_ALSACE_BLANC_DE_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_ALSACE_BLANC_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.3037 MAPE_Forecast=0.1906 MAPE_Test=0.0328 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3884 SMAPE_Forecast=0.2201 SMAPE_Test=0.0322 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.1484 MASE_Forecast=1.3318 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=49288.35874603176 CRPS_Forecast=36085.8921777778 CRPS_Test=6910.611111111066 -INFO:pyaf.std:MODEL_L1 L1_Fit=239057.80555555556 L1_Forecast=112843.61111111117 L1_Test=13821.222222222132 -INFO:pyaf.std:MODEL_L2 L2_Fit=381643.9708516124 L2_Forecast=144769.4922736975 L2_Test=13821.222222222132 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=9.890700967675714 LnQ_Forecast=0.6610701709434534 LnQ_Test=0.001040031254387233 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=162350.11111111112 MedAE_Forecast=108176.55555555562 MedAE_Test=13821.222222222132 -INFO:pyaf.std:MODEL_COMPLEXITY 1.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.028469581901544246 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff_ALSACE_BLANC_DE_ConstantTrend 0.0010881418808958248 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_ALSACE_BLANC_DE_ConstantTrend_residue_bestCycle_byMAPE None 0.00795851920299659 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='ALSACE_BLANC_GB' Length=46 Min=168388 Max=635447 Mean=410171.67391304346 StdDev=116887.8388986368 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_ALSACE_BLANC_GB' Min=0.0 Max=1.0 Mean=0.5176726578720107 StdDev=0.2502635403635018 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_ALSACE_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_ALSACE_BLANC_GB_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_ALSACE_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_ALSACE_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.2964 MAPE_Forecast=0.1402 MAPE_Test=0.0798 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.264 SMAPE_Forecast=0.1358 SMAPE_Test=0.0831 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.6582 MASE_Forecast=0.666 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=12977.083555555555 CRPS_Forecast=9037.235570370374 CRPS_Test=17752.111111111124 -INFO:pyaf.std:MODEL_L1 L1_Fit=106249.85185185184 L1_Forecast=55017.46913580247 L1_Test=35504.22222222225 -INFO:pyaf.std:MODEL_L2 L2_Fit=127746.35430699537 L2_Forecast=66480.16663925201 L2_Test=35504.22222222225 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=3.9433584231776666 LnQ_Forecast=0.2468630785700593 LnQ_Test=0.006921288501153507 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=103020.0 MedAE_Forecast=51085.77777777775 MedAE_Test=35504.22222222225 -INFO:pyaf.std:MODEL_COMPLEXITY 0.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _ALSACE_BLANC_GB_ConstantTrend 0.5157138129824663 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _ALSACE_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE None -0.04201884082691423 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='ALSACE_BLANC_US' Length=46 Min=318604 Max=1105824 Mean=691606.0217391305 StdDev=186251.07680639866 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_ALSACE_BLANC_US' Min=-0.5199867889535327 Max=0.5809519575214044 Mean=0.004424927344767443 StdDev=0.3220312467679562 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_ALSACE_BLANC_US_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR' [LinearTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'Diff_ALSACE_BLANC_US_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_ALSACE_BLANC_US_LinearTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_ALSACE_BLANC_US_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.2594 MAPE_Forecast=0.2382 MAPE_Test=0.1653 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.2404 SMAPE_Forecast=0.2489 SMAPE_Test=0.1802 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.6931 MASE_Forecast=0.8417 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=24202.243743595296 CRPS_Forecast=26923.355010786352 CRPS_Test=49784.480831394845 -INFO:pyaf.std:MODEL_L1 L1_Fit=159998.9709224591 L1_Forecast=164439.516326135 L1_Test=99568.96166278969 -INFO:pyaf.std:MODEL_L2 L2_Fit=200033.04802258493 L2_Forecast=202172.36774058035 L2_Test=99568.96166278969 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=3.5301758088606325 LnQ_Forecast=0.8097046487375348 LnQ_Test=0.03265713217359944 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=132505.91277637676 MedAE_Forecast=166397.71773263707 MedAE_Test=99568.96166278969 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.15678209395086506 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.028906107759287744, array([-0.03992925])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_ALSACE_BLANC_US_LinearTrend_residue_bestCycle_byMAPE None -0.016990129268071377 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BEAUJOLAIS_ROUGE_BE' Length=46 Min=61193.0 Max=603523.0 Mean=184391.15217391305 StdDev=105670.41770816535 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_BEAUJOLAIS_ROUGE_BE' Min=-0.7407823649807312 Max=0.6057999741854591 Mean=-0.0025996124612080343 StdDev=0.2536122505635422 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [PolyTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend' [PolyTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.7708 MAPE_Forecast=0.4232 MAPE_Test=1.0426 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.4981 SMAPE_Forecast=0.4323 SMAPE_Test=2.0 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.0112 MASE_Forecast=0.6865 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=23180.073201650357 CRPS_Forecast=24316.389441410647 CRPS_Test=82487.52296235377 -INFO:pyaf.std:MODEL_L1 L1_Fit=101271.42732198004 L1_Forecast=78438.86991009717 L1_Test=164975.04592470755 -INFO:pyaf.std:MODEL_L2 L2_Fit=120477.02984542736 L2_Forecast=104653.5426991158 L2_Test=164975.04592470755 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=14.372193824227013 LnQ_Forecast=2.664915499571408 LnQ_Test=inf -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=104677.83011869385 MedAE_Forecast=66156.15527719562 MedAE_Test=164975.04592470755 -INFO:pyaf.std:MODEL_COMPLEXITY 13.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.29851381999889365 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:POLYNOMIAL_RIDGE_TREND PolyTrend (-0.008168771320531221, array([ 0.02957897, -0.00593875, -0.02464801])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE None -0.010754386916218574 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag1 -0.2756751604172524 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag11 -0.18753525488470768 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag10 0.16026070745874801 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.11754450553158476 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.11016588184616469 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.07755975556018996 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag6 -0.047227285910540553 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.00273178233978056 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff_BEAUJOLAIS_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag5 0.00248855898148935 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BEAUJOLAIS_ROUGE_CN' Length=46 Min=8710.5 Max=453985.0 Mean=134450.53260869565 StdDev=103575.61175933064 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='CumSum_BEAUJOLAIS_ROUGE_CN' Min=0.19473044155908323 Max=12.989833237699443 Mean=6.134976851357982 StdDev=3.7511604706059716 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'CumSum_' -INFO:pyaf.std:BEST_DECOMPOSITION 'CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=1.417 MAPE_Forecast=0.8131 MAPE_Test=0.9343 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=1.6099 SMAPE_Forecast=1.5054 SMAPE_Test=1.7534 -INFO:pyaf.std:MODEL_MASE MASE_Fit=2.6905 MASE_Forecast=1.5675 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=56837.118628747805 CRPS_Forecast=43516.31133333334 CRPS_Test=61932.25 -INFO:pyaf.std:MODEL_L1 L1_Fit=174190.987654321 L1_Forecast=138864.5 L1_Test=123864.5 -INFO:pyaf.std:MODEL_L2 L2_Fit=360751.68783161486 L2_Forecast=183891.21582481253 L2_Test=123864.5 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=240.6539048490772 LnQ_Forecast=61.77565887889781 LnQ_Test=7.412656008058556 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=89717.0 MedAE_Forecast=91177.5 MedAE_Test=123864.5 -INFO:pyaf.std:MODEL_COMPLEXITY 1.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES Integration None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend 4.567735308344753 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES CumSum_BEAUJOLAIS_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE None 0.02613263154401224 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BEAUJOLAIS_ROUGE_DE' Length=46 Min=17985.5 Max=1055548.0 Mean=179998.70652173914 StdDev=234400.96473918032 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_BEAUJOLAIS_ROUGE_DE' Min=-0.9165259924100958 Max=0.8595482199867478 Mean=-0.0006363157798246831 StdDev=0.32151760965844917 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.6182 MAPE_Forecast=0.6144 MAPE_Test=0.7612 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.5239 SMAPE_Forecast=0.6012 SMAPE_Test=0.5513 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.5811 MASE_Forecast=0.5724 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=8072.466428571431 CRPS_Forecast=16896.295599999998 CRPS_Test=23085.5 -INFO:pyaf.std:MODEL_L1 L1_Fit=121252.86111111111 L1_Forecast=101230.22222222222 L1_Test=46171.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=268908.8411572105 L2_Forecast=155871.73582628762 L2_Test=46171.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=30.169890508826057 LnQ_Forecast=5.692548113948143 LnQ_Test=0.3203390421810493 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=35710.75 MedAE_Forecast=42501.5 MedAE_Test=46171.0 -INFO:pyaf.std:MODEL_COMPLEXITY 1.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.07039720498765134 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend 0.0003310643937112223 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_BEAUJOLAIS_ROUGE_DE_ConstantTrend_residue_bestCycle_byMAPE None 0.009120896331546294 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BEAUJOLAIS_ROUGE_GB' Length=46 Min=192141 Max=2272768 Mean=838876.5217391305 StdDev=444492.2831160113 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='RelDiff_BEAUJOLAIS_ROUGE_GB' Min=-0.9820419487590237 Max=38.33775732026932 Mean=1.6098763399427005 StdDev=6.083055590273744 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'RelDiff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'RelDiff_BEAUJOLAIS_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'RelDiff_BEAUJOLAIS_ROUGE_GB_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL 'RelDiff_BEAUJOLAIS_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'RelDiff_BEAUJOLAIS_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.7102 MAPE_Forecast=0.3365 MAPE_Test=0.022 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.4846 SMAPE_Forecast=0.3646 SMAPE_Test=0.0223 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9541 MASE_Forecast=0.8889 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=104959.51718462803 CRPS_Forecast=136794.40724023394 CRPS_Test=11352.49999999901 -INFO:pyaf.std:MODEL_L1 L1_Fit=414434.76689684176 L1_Forecast=327908.4444444452 L1_Test=22704.99999999802 -INFO:pyaf.std:MODEL_L2 L2_Fit=568068.8334224873 L2_Forecast=484042.82390307094 L2_Test=22704.99999999802 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=17.827099910240765 LnQ_Forecast=3.305584774308686 LnQ_Test=0.0004957463508895836 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=298896.99999999965 MedAE_Forecast=181747.99999999604 MedAE_Test=22704.99999999802 -INFO:pyaf.std:MODEL_COMPLEXITY 3.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:REALTIVE_DIFFERENCING_TRANSFORMATION RelativeDifference 0.06742006135650455 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.0 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES RelDiff_BEAUJOLAIS_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE None -0.14491168813573016 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BEAUJOLAIS_ROUGE_US' Length=46 Min=440023 Max=3915548 Mean=1079590.3260869565 StdDev=842735.9221298484 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BEAUJOLAIS_ROUGE_US' Min=0.0 Max=1.0 Mean=0.18402034975635523 StdDev=0.24247730116452862 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BEAUJOLAIS_ROUGE_US_PolyTrend_residue_bestCycle_byMAPE_residue_NoAR' [PolyTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_BEAUJOLAIS_ROUGE_US_PolyTrend' [PolyTrend] -INFO:pyaf.std:CYCLE_DETAIL '_BEAUJOLAIS_ROUGE_US_PolyTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_BEAUJOLAIS_ROUGE_US_PolyTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.5762 MAPE_Forecast=0.2867 MAPE_Test=0.2685 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.4781 SMAPE_Forecast=0.2956 SMAPE_Test=0.2367 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.8072 MASE_Forecast=0.5783 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=82052.93382048032 CRPS_Forecast=33384.499288378676 CRPS_Test=81827.41449220054 -INFO:pyaf.std:MODEL_L1 L1_Fit=582255.0717515774 L1_Forecast=387408.120254391 L1_Test=163654.82898440107 -INFO:pyaf.std:MODEL_L2 L2_Fit=867034.3960889542 L2_Forecast=774435.6013471646 L2_Test=163654.82898440107 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=12.735284617727174 LnQ_Forecast=2.1361959218498803 LnQ_Test=0.05657101805634638 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=437061.3810473102 MedAE_Forecast=101991.21927769063 MedAE_Test=163654.82898440107 -INFO:pyaf.std:MODEL_COMPLEXITY 3.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:POLYNOMIAL_RIDGE_TREND PolyTrend (0.19888669626107952, array([ 0.01444671, -0.0274361 , -0.01951416])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _BEAUJOLAIS_ROUGE_US_PolyTrend_residue_bestCycle_byMAPE None -0.11317070185639704 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_BLANC_BE' Length=46 Min=245742 Max=691209 Mean=456342.2173913043 StdDev=106016.69675039769 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='CumSum_BORDEAUX_BLANC_BE' Min=0.47691074759746516 Max=21.747087887542737 Mean=12.044578278916088 StdDev=6.530331704924755 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'CumSum_' -INFO:pyaf.std:BEST_DECOMPOSITION 'CumSum_BORDEAUX_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'CumSum_BORDEAUX_BLANC_BE_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'CumSum_BORDEAUX_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'CumSum_BORDEAUX_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.6982 MAPE_Forecast=0.3043 MAPE_Test=0.3859 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.6407 SMAPE_Forecast=0.3995 SMAPE_Test=0.4782 -INFO:pyaf.std:MODEL_MASE MASE_Fit=3.4742 MASE_Forecast=0.8534 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=137952.74173148148 CRPS_Forecast=43560.46853333333 CRPS_Test=77218.0 -INFO:pyaf.std:MODEL_L1 L1_Fit=334245.7199074074 L1_Forecast=153477.44444444444 L1_Test=154436.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=722992.4725423388 L2_Forecast=217678.8872743519 L2_Test=154436.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=20.637668576044653 LnQ_Forecast=2.6951301452780396 LnQ_Test=0.23778032815028388 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=223302.0 MedAE_Forecast=95902.0 MedAE_Test=154436.0 -INFO:pyaf.std:MODEL_COMPLEXITY 1.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES Integration None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND CumSum_BORDEAUX_BLANC_BE_ConstantTrend 9.665957111675313 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES CumSum_BORDEAUX_BLANC_BE_ConstantTrend_residue_bestCycle_byMAPE None -0.3107714301321227 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_BLANC_CN' Length=46 Min=167874 Max=1890312 Mean=514962.47826086957 StdDev=297091.7530392676 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BORDEAUX_BLANC_CN' Min=0.0 Max=1.0 Mean=0.20150999818911894 StdDev=0.17248327837592273 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BORDEAUX_BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_BORDEAUX_BLANC_CN_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_BORDEAUX_BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_BORDEAUX_BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.4861 MAPE_Forecast=0.306 MAPE_Test=0.2898 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.4008 SMAPE_Forecast=0.3129 SMAPE_Test=0.2532 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.7969 MASE_Forecast=0.5033 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=28889.264666666677 CRPS_Forecast=12569.710755555572 CRPS_Test=55567.916666666715 -INFO:pyaf.std:MODEL_L1 L1_Fit=196901.17592592593 L1_Forecast=234114.8703703704 L1_Test=111135.83333333343 -INFO:pyaf.std:MODEL_L2 L2_Fit=236751.57395505198 L2_Forecast=477151.9543347897 L2_Test=111135.83333333343 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=8.600680576750259 LnQ_Forecast=2.44225343919888 LnQ_Test=0.06478295358230093 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=189473.83333333343 MedAE_Forecast=66245.16666666657 MedAE_Test=111135.83333333343 -INFO:pyaf.std:MODEL_COMPLEXITY 0.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _BORDEAUX_BLANC_CN_ConstantTrend 0.18966652694223735 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _BORDEAUX_BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE None -0.04625120517158435 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_BLANC_DE' Length=46 Min=199559 Max=1326338 Mean=401697.6304347826 StdDev=223714.96243107508 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BORDEAUX_BLANC_DE' Min=0.0 Max=1.0 Mean=0.17939509915855958 StdDev=0.19854378048497096 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BORDEAUX_BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_BORDEAUX_BLANC_DE_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_BORDEAUX_BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_BORDEAUX_BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.3966 MAPE_Forecast=0.2533 MAPE_Test=0.003 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3632 SMAPE_Forecast=0.1866 SMAPE_Test=0.003 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9722 MASE_Forecast=2.7377 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=44971.34961904762 CRPS_Forecast=51498.96807407407 CRPS_Test=509.5 -INFO:pyaf.std:MODEL_L1 L1_Fit=178217.47222222222 L1_Forecast=97102.88888888889 L1_Test=1019.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=270676.3073877788 L2_Forecast=201387.2590557804 L2_Test=1019.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=9.037320793442333 LnQ_Forecast=0.8857663405603857 LnQ_Test=9.301281663544618e-06 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=78177.5 MedAE_Forecast=31658.0 MedAE_Test=1019.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.13148008615709025 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _BORDEAUX_BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE None 0.007675418160970338 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_BLANC_GB' Length=46 Min=494262 Max=1886486 Mean=895965.0 StdDev=300821.7917560957 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_BORDEAUX_BLANC_GB' Min=-0.5421088847771623 Max=0.49939233916381276 Mean=0.0013485617256993097 StdDev=0.21175773306902082 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff_BORDEAUX_BLANC_GB_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.4892 MAPE_Forecast=0.1116 MAPE_Test=0.1067 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.6864 SMAPE_Forecast=0.1006 SMAPE_Test=0.1013 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.7804 MASE_Forecast=0.5923 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=156636.51594187782 CRPS_Forecast=24845.010940412245 CRPS_Test=35172.53277093469 -INFO:pyaf.std:MODEL_L1 L1_Fit=511373.74064422614 L1_Forecast=65509.45707904265 L1_Test=70345.06554186938 -INFO:pyaf.std:MODEL_L2 L2_Fit=599799.3435682083 L2_Forecast=88616.28897110966 L2_Test=70345.06554186938 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=24.39220337983192 LnQ_Forecast=0.18058336276374282 LnQ_Test=0.01027472789816153 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=494168.0109198079 MedAE_Forecast=41655.345844400814 MedAE_Test=70345.06554186938 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.05658356701220493 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff_BORDEAUX_BLANC_GB_ConstantTrend -0.00012196712278739659 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE None -0.01819405098924056 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.280373958027181 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.11103063471069782 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.08406521030913477 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag11 -0.08095945721203684 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag1 -0.057453131245017615 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag5 -0.03976476742898015 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag4 0.02586781612444001 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag6 -0.016989462429391013 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff_BORDEAUX_BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag7 -0.0111505778953486 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_BLANC_US' Length=46 Min=308516 Max=2175193 Mean=915953.8695652174 StdDev=381971.9587261785 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_BORDEAUX_BLANC_US' Min=-0.7088575045388141 Max=0.40174706175733677 Mean=0.00783313598582331 StdDev=0.21043850590638155 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff_BORDEAUX_BLANC_US_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.5187 MAPE_Forecast=0.1983 MAPE_Test=0.3529 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.8124 SMAPE_Forecast=0.2 SMAPE_Test=0.4285 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.8136 MASE_Forecast=0.6191 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=165718.5883515183 CRPS_Forecast=23550.72775680116 CRPS_Test=173102.7023511628 -INFO:pyaf.std:MODEL_L1 L1_Fit=568550.4357534433 L1_Forecast=161841.43942156024 L1_Test=346205.4047023256 -INFO:pyaf.std:MODEL_L2 L2_Fit=751151.8075714359 L2_Forecast=219149.40905429173 L2_Test=346205.4047023256 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=inf LnQ_Forecast=0.5895833711832634 LnQ_Test=0.1894003483439677 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=453331.26332439034 MedAE_Forecast=125047.80902375502 MedAE_Test=346205.4047023256 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff_BORDEAUX_BLANC_US_ConstantTrend 0.0030705782402514112 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE None 0.028664960366588436 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.18516013177329338 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 0.1460121740885707 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag1 -0.11145506397336945 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag3 0.0921078854985441 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.0790358156573382 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.07183448342943316 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag5 -0.057576380947693025 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.016109589626225107 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff_BORDEAUX_BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag11 0.008005892430944555 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_ROUGE_BE' Length=46 Min=2715290 Max=8870126 Mean=4860646.326086956 StdDev=1181817.6117335581 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BORDEAUX_ROUGE_BE' Min=0.0 Max=1.0 Mean=0.34856433641561796 StdDev=0.19201447637817773 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [PolyTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL '_BORDEAUX_ROUGE_BE_PolyTrend' [PolyTrend] -INFO:pyaf.std:CYCLE_DETAIL '_BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1233 MAPE_Forecast=0.1779 MAPE_Test=0.1216 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.1202 SMAPE_Forecast=0.1876 SMAPE_Test=0.1147 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.68 MASE_Forecast=0.9286 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=128526.0257612072 CRPS_Forecast=172280.45485734544 CRPS_Test=171769.4976565058 -INFO:pyaf.std:MODEL_L1 L1_Fit=619164.3648728966 L1_Forecast=749196.9673755659 L1_Test=343538.9953130116 -INFO:pyaf.std:MODEL_L2 L2_Fit=893525.8047197589 L2_Forecast=870264.1896522646 L2_Test=343538.9953130116 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.9773542661318251 LnQ_Forecast=0.3971233878012344 LnQ_Test=0.013175330839905986 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=519625.759507847 MedAE_Forecast=651411.6498942822 MedAE_Test=343538.9953130116 -INFO:pyaf.std:MODEL_COMPLEXITY 12.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:POLYNOMIAL_RIDGE_TREND PolyTrend (0.46514438398192465, array([-0.08837891, -0.07190841, -0.0215427 ])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE None 0.007687924020665704 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag1 0.1412343726411859 -INFO:pyaf.std:AR_MODEL_COEFF 2 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.1292546031364711 -INFO:pyaf.std:AR_MODEL_COEFF 3 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.11276495747771102 -INFO:pyaf.std:AR_MODEL_COEFF 4 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag11 0.10532507386988184 -INFO:pyaf.std:AR_MODEL_COEFF 5 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.08373785514278631 -INFO:pyaf.std:AR_MODEL_COEFF 6 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag6 0.07820561366800838 -INFO:pyaf.std:AR_MODEL_COEFF 7 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag5 -0.07065802964978699 -INFO:pyaf.std:AR_MODEL_COEFF 8 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.042397198925981386 -INFO:pyaf.std:AR_MODEL_COEFF 9 _BORDEAUX_ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.03472647289194582 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_ROUGE_CN' Length=46 Min=5377235 Max=19050876 Mean=11306225.717391305 StdDev=3097054.240919774 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_BORDEAUX_ROUGE_CN' Min=-0.5205639083255148 Max=0.6222241756968755 Mean=0.0042626062674957586 StdDev=0.21647199552629043 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff_BORDEAUX_ROUGE_CN_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.2965 MAPE_Forecast=0.2431 MAPE_Test=0.1823 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3248 SMAPE_Forecast=0.1984 SMAPE_Test=0.1671 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.6575 MASE_Forecast=0.697 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=616360.4688516462 CRPS_Forecast=414909.5477440574 CRPS_Test=1029773.8999259844 -INFO:pyaf.std:MODEL_L1 L1_Fit=3457985.0984571697 L1_Forecast=2095071.2871508482 L1_Test=2059547.799851969 -INFO:pyaf.std:MODEL_L2 L2_Fit=4341864.454202424 L2_Forecast=2712945.66113926 L2_Test=2059547.799851969 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=5.681186632971126 LnQ_Forecast=0.7337451269271154 LnQ_Test=0.02804203999864553 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=2826187.804410982 MedAE_Forecast=1591622.6505130827 MedAE_Test=2059547.799851969 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.23691678024894758 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff_BORDEAUX_ROUGE_CN_ConstantTrend 0.007485076579091116 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE None 0.03547853494179054 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.19100427440348644 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.17002237374312232 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.15514610294503167 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.06443290998466118 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag5 0.06154217607692754 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag7 0.06107179843273487 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag11 0.02839108761587728 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag6 -0.004886735664247674 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag1 0.0007278120565664299 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_ROUGE_DE' Length=46 Min=2405187 Max=11394342 Mean=5615971.565217392 StdDev=2064107.8688105305 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff_BORDEAUX_ROUGE_DE' Min=-0.5372981108902894 Max=0.8250584176154487 Mean=-0.006534434379901214 StdDev=0.22577694348016444 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff_BORDEAUX_ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR' [LinearTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'Diff_BORDEAUX_ROUGE_DE_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff_BORDEAUX_ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff_BORDEAUX_ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.337 MAPE_Forecast=0.272 MAPE_Test=0.5614 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.2917 SMAPE_Forecast=0.2118 SMAPE_Test=0.4384 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.1162 MASE_Forecast=0.8426 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=207180.31540804406 CRPS_Forecast=230227.99529803204 CRPS_Test=845015.8418517523 -INFO:pyaf.std:MODEL_L1 L1_Fit=1699796.3050877494 L1_Forecast=910725.4387466399 L1_Test=1690031.6837035045 -INFO:pyaf.std:MODEL_L2 L2_Fit=2172921.2151209507 L2_Forecast=1186136.6973808925 L2_Test=1690031.6837035045 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=5.20822712158209 LnQ_Forecast=0.8373354139586265 LnQ_Test=0.19855288855926506 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=1361157.460387528 MedAE_Forecast=562244.9510739306 MedAE_Test=1690031.6837035045 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.36790043113062354 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.004382533135239503, array([-0.01001478])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff_BORDEAUX_ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE None 0.004992158687679388 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_ROUGE_GB' Length=46 Min=3514450 Max=31746732 Mean=11497424.326086957 StdDev=7109974.038927047 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BORDEAUX_ROUGE_GB' Min=0.0 Max=1.0 Mean=0.28276050537065894 StdDev=0.25183844646093606 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BORDEAUX_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_BORDEAUX_ROUGE_GB_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_BORDEAUX_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_BORDEAUX_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.3547 MAPE_Forecast=0.1592 MAPE_Test=0.1213 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3104 SMAPE_Forecast=0.1541 SMAPE_Test=0.1291 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9722 MASE_Forecast=0.9753 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=1773762.6696507938 CRPS_Forecast=299058.9356296297 CRPS_Test=400754.5 -INFO:pyaf.std:MODEL_L1 L1_Fit=3622128.5 L1_Forecast=951526.7777777778 L1_Test=801509.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=4522958.716730319 L2_Forecast=1259434.9100598427 L2_Test=801509.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=5.664611466930085 LnQ_Forecast=0.37696372621063096 LnQ_Test=0.016711386613397945 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=3389606.5 MedAE_Forecast=759107.0 MedAE_Test=801509.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.4267069165716041 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _BORDEAUX_ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE None 0.012215165603687295 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BORDEAUX_ROUGE_US' Length=46 Min=4185506 Max=12010664 Mean=7258747.695652174 StdDev=1702658.0645825628 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BORDEAUX_ROUGE_US' Min=0.0 Max=1.0 Mean=0.39273861251775033 StdDev=0.217587691466749 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)' [LinearTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL '_BORDEAUX_ROUGE_US_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL '_BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1584 MAPE_Forecast=0.2095 MAPE_Test=0.1944 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.154 SMAPE_Forecast=0.1938 SMAPE_Test=0.1772 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.6786 MASE_Forecast=0.6973 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=226130.76628701092 CRPS_Forecast=258588.1343819625 CRPS_Test=496654.3093174575 -INFO:pyaf.std:MODEL_L1 L1_Fit=1161093.0378946168 L1_Forecast=1234635.7322412622 L1_Test=993308.618634915 -INFO:pyaf.std:MODEL_L2 L2_Fit=1471850.6026004446 L2_Forecast=1423096.364681896 L2_Test=993308.618634915 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=1.3321995797745096 LnQ_Forecast=0.4869588300300327 LnQ_Test=0.03156682243328453 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=985239.0831511058 MedAE_Forecast=1027185.6522214338 MedAE_Test=993308.618634915 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.49369407787976227, array([-0.14476688])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE None -0.02479468453062053 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.18895756270975983 -INFO:pyaf.std:AR_MODEL_COEFF 2 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag1 0.1537984555262013 -INFO:pyaf.std:AR_MODEL_COEFF 3 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag11 0.09784302201355191 -INFO:pyaf.std:AR_MODEL_COEFF 4 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag5 0.06742939717146852 -INFO:pyaf.std:AR_MODEL_COEFF 5 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag6 0.0620260558237274 -INFO:pyaf.std:AR_MODEL_COEFF 6 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.04880754861822918 -INFO:pyaf.std:AR_MODEL_COEFF 7 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag7 -0.03866973795915566 -INFO:pyaf.std:AR_MODEL_COEFF 8 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag2 0.033823706725794975 -INFO:pyaf.std:AR_MODEL_COEFF 9 _BORDEAUX_ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.018496930922240196 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_BLANC_BE' Length=46 Min=853049 Max=2808045 Mean=1667050.0 StdDev=325334.3885597121 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__BLANC_BE' Min=0.0 Max=1.0 Mean=0.4163696498611762 StdDev=0.16641179243318763 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_AR(11)' [Lag1Trend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL '__BLANC_BE_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '__BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1324 MAPE_Forecast=0.2689 MAPE_Test=0.0678 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.132 SMAPE_Forecast=0.2275 SMAPE_Test=0.0655 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.7511 MASE_Forecast=0.8117 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=44396.78367963438 CRPS_Forecast=125558.55444981134 CRPS_Test=36824.30447081209 -INFO:pyaf.std:MODEL_L1 L1_Fit=221675.2804718025 L1_Forecast=393605.04344710126 L1_Test=73648.60894162417 -INFO:pyaf.std:MODEL_L2 L2_Fit=275095.41528258804 L2_Forecast=523455.16074887384 L2_Test=73648.60894162417 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.9725924773048173 LnQ_Forecast=0.7846447729498253 LnQ_Test=0.004298222524592725 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=168658.77297792782 MedAE_Forecast=310534.7100526069 MedAE_Test=73648.60894162417 -INFO:pyaf.std:MODEL_COMPLEXITY 11.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.376979287937162 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE None -0.033707485846518365 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag1 -0.26468795900682485 -INFO:pyaf.std:AR_MODEL_COEFF 2 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag7 -0.11574914427797915 -INFO:pyaf.std:AR_MODEL_COEFF 3 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag3 0.10576983766557745 -INFO:pyaf.std:AR_MODEL_COEFF 4 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag9 0.08893174981019789 -INFO:pyaf.std:AR_MODEL_COEFF 5 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag4 -0.08266167476470063 -INFO:pyaf.std:AR_MODEL_COEFF 6 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag5 0.0741125715706879 -INFO:pyaf.std:AR_MODEL_COEFF 7 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag10 -0.027177381595060265 -INFO:pyaf.std:AR_MODEL_COEFF 8 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag11 -0.007846774810984822 -INFO:pyaf.std:AR_MODEL_COEFF 9 __BLANC_BE_Lag1Trend_residue_bestCycle_byMAPE_residue_Lag8 -0.002773921403224383 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_BLANC_CN' Length=46 Min=263941 Max=1909858 Mean=638138.7173913043 StdDev=294811.54292837897 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__BLANC_CN' Min=0.0 Max=1.0 Mean=0.22734908102371162 StdDev=0.17911689527988287 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '__BLANC_CN_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '__BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.3872 MAPE_Forecast=0.255 MAPE_Test=0.2436 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3344 SMAPE_Forecast=0.2654 SMAPE_Test=0.2172 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.812 MASE_Forecast=0.5312 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=28921.861968253983 CRPS_Forecast=15487.626059259273 CRPS_Test=60540.02777777781 -INFO:pyaf.std:MODEL_L1 L1_Fit=204426.3425925926 L1_Forecast=229134.5617283951 L1_Test=121080.05555555562 -INFO:pyaf.std:MODEL_L2 L2_Fit=247309.123453371 L2_Forecast=447221.0158893082 L2_Test=121080.05555555562 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=6.038129557300077 LnQ_Forecast=1.7790335108866426 LnQ_Test=0.04753619252147777 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=178361.55555555562 MedAE_Forecast=89705.05555555562 MedAE_Test=121080.05555555562 -INFO:pyaf.std:MODEL_COMPLEXITY 0.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND __BLANC_CN_ConstantTrend 0.2151621591827265 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __BLANC_CN_ConstantTrend_residue_bestCycle_byMAPE None -0.03693597888323387 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_BLANC_DE' Length=46 Min=512709 Max=3197853 Mean=1005336.9565217391 StdDev=451688.6298029899 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__BLANC_DE' Min=0.0 Max=1.0 Mean=0.18346425983922615 StdDev=0.1682176560374378 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '__BLANC_DE_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '__BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.2715 MAPE_Forecast=0.137 MAPE_Test=0.0813 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.2595 SMAPE_Forecast=0.13 SMAPE_Test=0.0781 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9722 MASE_Forecast=1.1418 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=96115.02955555556 CRPS_Forecast=66397.2358074074 CRPS_Test=30746.0 -INFO:pyaf.std:MODEL_L1 L1_Fit=301820.6388888889 L1_Forecast=122775.44444444444 L1_Test=61492.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=473858.77604200575 L2_Forecast=141608.55178546874 L2_Test=61492.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=4.425783363738219 LnQ_Forecast=0.182220731188903 LnQ_Test=0.0061100984875037114 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=208938.5 MedAE_Forecast=87935.0 MedAE_Test=61492.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.07169634105284484 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __BLANC_DE_Lag1Trend_residue_bestCycle_byMAPE None 0.015693385531651186 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_BLANC_GB' Length=46 Min=766268 Max=2434870 Mean=1306136.6739130435 StdDev=359090.10102328827 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff__BLANC_GB' Min=-0.6617989190951468 Max=0.4989608067112469 Mean=0.0024343732058333873 StdDev=0.23755979642072944 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff__BLANC_GB_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.4284 MAPE_Forecast=0.1098 MAPE_Test=0.0493 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.5756 SMAPE_Forecast=0.1048 SMAPE_Test=0.0481 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.7337 MASE_Forecast=0.6257 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=196719.18626314044 CRPS_Forecast=30925.38999308119 CRPS_Test=27201.07583473937 -INFO:pyaf.std:MODEL_L1 L1_Fit=633351.7958573535 L1_Forecast=111525.11048114236 L1_Test=54402.15166947874 -INFO:pyaf.std:MODEL_L2 L2_Fit=739604.2640776456 L2_Forecast=139616.6108637559 L2_Test=54402.15166947874 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=16.741756559440958 LnQ_Forecast=0.16686536234033367 LnQ_Test=0.002313093850894463 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=624629.7636271564 MedAE_Forecast=118785.27801710647 MedAE_Test=54402.15166947874 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.09052188598599306 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff__BLANC_GB_ConstantTrend 7.790953145209167e-06 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE None -0.020413495848620594 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.30596691132002674 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.17203157799330893 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag1 -0.13237942639599454 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.12788196689957498 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag11 -0.12469038358564336 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag7 -0.11220039857613755 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag8 0.048560126439263156 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag6 0.03897880343939253 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff__BLANC_GB_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.02599572640726143 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_BLANC_US' Length=46 Min=750542 Max=3049849 Mean=1607559.891304348 StdDev=470190.48609391 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff__BLANC_US' Min=-0.7535105142549472 Max=0.41088293124841524 Mean=0.007874253454174031 StdDev=0.23614564418802284 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff__BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [ConstantTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'Diff__BLANC_US_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff__BLANC_US_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff__BLANC_US_ConstantTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.363 MAPE_Forecast=0.1927 MAPE_Test=0.1549 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.4722 SMAPE_Forecast=0.2095 SMAPE_Test=0.1679 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.5004 MASE_Forecast=0.7531 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=188053.55138095238 CRPS_Forecast=60318.23195555558 CRPS_Test=122658.83333333337 -INFO:pyaf.std:MODEL_L1 L1_Fit=672972.4537037037 L1_Forecast=307962.51851851854 L1_Test=245317.66666666674 -INFO:pyaf.std:MODEL_L2 L2_Fit=836798.0941911467 L2_Forecast=406290.20590596466 L2_Test=245317.66666666674 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=12.048480004294275 LnQ_Forecast=0.5917446026312965 LnQ_Test=0.028337831911019754 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=543792.6666666666 MedAE_Forecast=240976.33333333326 MedAE_Test=245317.66666666674 -INFO:pyaf.std:MODEL_COMPLEXITY 1.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff__BLANC_US_ConstantTrend 0.0055548621099023926 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff__BLANC_US_ConstantTrend_residue_bestCycle_byMAPE None 0.026062055509188935 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_ROUGE_BE' Length=46 Min=2796589.0 Max=9022530.0 Mean=5045037.478260869 StdDev=1209077.406360806 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__ROUGE_BE' Min=0.0 Max=1.0 Mean=0.36114195079279904 StdDev=0.19419994605808277 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [PolyTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL '__ROUGE_BE_PolyTrend' [PolyTrend] -INFO:pyaf.std:CYCLE_DETAIL '__ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1211 MAPE_Forecast=0.1808 MAPE_Test=0.1812 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.1177 SMAPE_Forecast=0.1848 SMAPE_Test=0.1662 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.6796 MASE_Forecast=0.8953 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=127282.11610722914 CRPS_Forecast=177140.12706089628 CRPS_Test=270258.8851209488 -INFO:pyaf.std:MODEL_L1 L1_Fit=629651.0867235587 L1_Forecast=773998.7661385919 L1_Test=540517.7702418976 -INFO:pyaf.std:MODEL_L2 L2_Fit=908521.4784400206 L2_Forecast=882820.243177967 L2_Test=540517.7702418976 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.948604578767053 LnQ_Forecast=0.37512411993168904 LnQ_Test=0.027738011066748985 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=609785.0740775522 MedAE_Forecast=816318.8297135197 MedAE_Test=540517.7702418976 -INFO:pyaf.std:MODEL_COMPLEXITY 12.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:POLYNOMIAL_RIDGE_TREND PolyTrend (0.47106022140516596, array([-0.08035989, -0.06589803, -0.01848032])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE None 0.004597670878134369 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag1 0.15052229796871366 -INFO:pyaf.std:AR_MODEL_COEFF 2 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.13165412889009398 -INFO:pyaf.std:AR_MODEL_COEFF 3 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.12804261750085089 -INFO:pyaf.std:AR_MODEL_COEFF 4 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag11 0.09799908499098206 -INFO:pyaf.std:AR_MODEL_COEFF 5 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.09744657724500895 -INFO:pyaf.std:AR_MODEL_COEFF 6 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag5 -0.06929330289980347 -INFO:pyaf.std:AR_MODEL_COEFF 7 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag6 0.06083255131370055 -INFO:pyaf.std:AR_MODEL_COEFF 8 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag7 -0.05818199442488279 -INFO:pyaf.std:AR_MODEL_COEFF 9 __ROUGE_BE_PolyTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.04890936450867966 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_ROUGE_CN' Length=46 Min=5386017.0 Max=19253413.0 Mean=11440676.25 StdDev=3141160.623167092 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff__ROUGE_CN' Min=-0.521949686877046 Max=0.6280934791218192 Mean=0.004261296566170153 StdDev=0.21781495020338332 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff__ROUGE_CN_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.2994 MAPE_Forecast=0.2493 MAPE_Test=0.2164 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3241 SMAPE_Forecast=0.1981 SMAPE_Test=0.1953 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.6623 MASE_Forecast=0.6871 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=623358.349481128 CRPS_Forecast=412507.1830177605 CRPS_Test=1236949.490383301 -INFO:pyaf.std:MODEL_L1 L1_Fit=3502122.7997660246 L1_Forecast=2102196.959590761 L1_Test=2473898.980766602 -INFO:pyaf.std:MODEL_L2 L2_Fit=4365000.72075876 L2_Forecast=2815902.162522173 L2_Test=2473898.980766602 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=5.58490852133661 LnQ_Forecast=0.7854304217532522 LnQ_Test=0.03838496176878171 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=3029105.412158279 MedAE_Forecast=1843376.6309232246 MedAE_Test=2473898.980766602 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.2398541153652784 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff__ROUGE_CN_ConstantTrend 0.008025246973388352 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE None 0.02816590239596695 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.19457115949994758 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.16965919987282901 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.15923066633522415 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.06768139253928539 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag5 0.06231542730151443 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag7 0.05792653049169015 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag11 0.030037191582266767 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag6 -0.009255697326140289 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff__ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag1 0.005670787145972189 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_ROUGE_DE' Length=46 Min=2576759.5 Max=11527120.0 Mean=5795970.271739131 StdDev=2149090.023555313 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff__ROUGE_DE' Min=-0.533286899449469 Max=0.8969814120894907 Mean=-0.006636521609332408 StdDev=0.24218860593438918 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff__ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR' [LinearTrend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL 'Diff__ROUGE_DE_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff__ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff__ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.347 MAPE_Forecast=0.2428 MAPE_Test=0.5046 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3 SMAPE_Forecast=0.1972 SMAPE_Test=0.403 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.0612 MASE_Forecast=0.7929 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=228414.71619330518 CRPS_Forecast=208293.8817531479 CRPS_Test=774844.250157237 -INFO:pyaf.std:MODEL_L1 L1_Fit=1800173.5358779323 L1_Forecast=876283.825370993 L1_Test=1549688.500314474 -INFO:pyaf.std:MODEL_L2 L2_Fit=2277685.5536553403 L2_Forecast=1118073.1962001524 L2_Test=1549688.500314474 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=5.428683562266312 LnQ_Forecast=0.6898403218241351 LnQ_Test=0.16690871351989112 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=1588472.4631870543 MedAE_Forecast=858869.0306358058 MedAE_Test=1549688.500314474 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.36049592639313244 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.005684134701721832, array([-0.01254691])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff__ROUGE_DE_LinearTrend_residue_bestCycle_byMAPE None 0.021938356087334927 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_ROUGE_GB' Length=46 Min=3706591 Max=32312972 Mean=12336300.847826088 StdDev=7138759.909037828 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__ROUGE_GB' Min=0.0 Max=1.0 Mean=0.30167080022551923 StdDev=0.24955131196210478 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '__ROUGE_GB_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '__ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.3701 MAPE_Forecast=0.1611 MAPE_Test=0.1079 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3202 SMAPE_Forecast=0.1552 SMAPE_Test=0.114 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9722 MASE_Forecast=0.9711 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=1780363.0326984127 CRPS_Forecast=395166.0437481482 CRPS_Test=412107.0 -INFO:pyaf.std:MODEL_L1 L1_Fit=3920390.722222222 L1_Forecast=1086047.0 L1_Test=824214.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=4785177.235679521 L2_Forecast=1442701.9862164112 L2_Test=824214.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=6.085723259825179 LnQ_Forecast=0.3839237928178843 LnQ_Test=0.01302919791418679 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=4071414.5 MedAE_Forecast=801320.0 MedAE_Test=824214.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.4260303321835782 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __ROUGE_GB_Lag1Trend_residue_bestCycle_byMAPE None 0.008778128907672725 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_ROUGE_US' Length=46 Min=4816309 Max=14136138 Mean=8338338.021739131 StdDev=2220242.2116335835 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff__ROUGE_US' Min=-0.7864490861366662 Max=0.6051233343444391 Mean=-0.0011392166474112487 StdDev=0.2965500356757686 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)' [LinearTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff__ROUGE_US_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.2936 MAPE_Forecast=0.1928 MAPE_Test=0.1212 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.2894 SMAPE_Forecast=0.1674 SMAPE_Test=0.1143 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.1324 MASE_Forecast=0.55 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=468603.8111824813 CRPS_Forecast=295501.0237563763 CRPS_Test=346575.008238866 -INFO:pyaf.std:MODEL_L1 L1_Fit=2480136.675422486 L1_Forecast=1229058.6818912183 L1_Test=693150.016477732 -INFO:pyaf.std:MODEL_L2 L2_Fit=2890410.359492552 L2_Forecast=1585112.6348889542 L2_Test=693150.016477732 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=4.126577217842305 LnQ_Forecast=0.45766601875735763 LnQ_Test=0.01309071323328303 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=2439884.761531694 MedAE_Forecast=1237343.0465203915 MedAE_Test=693150.016477732 -INFO:pyaf.std:MODEL_COMPLEXITY 11.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.14918159979115497 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.023190474237497087, array([-0.03316275])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE None 0.031485285910385206 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag1 -0.31229767783975176 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.2599780493275398 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.16232964358661217 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag7 0.1475583028485564 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag6 0.14053541854745147 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.12796937524855653 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.12755453015475626 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.12367893630633378 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff__ROUGE_US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag5 0.02068082727070708 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='__BE' Length=46 Min=3649638.0 Max=10746894.0 Mean=6712087.478260869 StdDev=1373420.1322209786 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='CumSum___BE' Min=0.5054939542831764 Max=19.84889314969053 Mean=11.291048995310422 StdDev=5.943153597436964 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'CumSum_' -INFO:pyaf.std:BEST_DECOMPOSITION 'CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'CumSum___BE_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1602 MAPE_Forecast=0.1846 MAPE_Test=0.0285 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.1622 SMAPE_Forecast=0.162 SMAPE_Test=0.0289 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.0622 MASE_Forecast=0.9775 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=331640.09819689055 CRPS_Forecast=373146.75231046387 CRPS_Test=57924.56816065917 -INFO:pyaf.std:MODEL_L1 L1_Fit=1149683.1187295122 L1_Forecast=966048.5414921293 L1_Test=115849.13632131834 -INFO:pyaf.std:MODEL_L2 L2_Fit=1483457.1202722718 L2_Forecast=1304601.0282568363 L2_Test=115849.13632131834 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=1.609033113469415 LnQ_Forecast=0.45229779792833447 LnQ_Test=0.0008340498510378951 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=907203.737387334 MedAE_Forecast=590988.0275798924 MedAE_Test=115849.13632131834 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES Integration None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND CumSum___BE_ConstantTrend 9.159452742095757 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE None 0.2324628094920671 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag1 0.857774894397618 -INFO:pyaf.std:AR_MODEL_COEFF 2 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 0.1756666140700773 -INFO:pyaf.std:AR_MODEL_COEFF 3 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag6 0.12920088590070564 -INFO:pyaf.std:AR_MODEL_COEFF 4 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.11099886103107412 -INFO:pyaf.std:AR_MODEL_COEFF 5 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.07107597115749656 -INFO:pyaf.std:AR_MODEL_COEFF 6 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag5 0.06092990873583344 -INFO:pyaf.std:AR_MODEL_COEFF 7 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag7 -0.03965043605984052 -INFO:pyaf.std:AR_MODEL_COEFF 8 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.0220385560494607 -INFO:pyaf.std:AR_MODEL_COEFF 9 CumSum___BE_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 0.009312584542220836 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='__CN' Length=46 Min=5739856.0 Max=20299168.0 Mean=12078814.967391305 StdDev=3221460.4046913725 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='___CN' Min=0.0 Max=1.0 Mean=0.43538863425629615 StdDev=0.22126460403426837 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL '___CN_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '___CN_ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1687 MAPE_Forecast=0.2397 MAPE_Test=0.1915 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.1562 SMAPE_Forecast=0.2031 SMAPE_Test=0.1748 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.8553 MASE_Forecast=0.7447 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=469198.9953552623 CRPS_Forecast=517552.9247040513 CRPS_Test=1142002.2747569839 -INFO:pyaf.std:MODEL_L1 L1_Fit=1874766.16532225 L1_Forecast=2310954.5925318357 L1_Test=2284004.5495139677 -INFO:pyaf.std:MODEL_L2 L2_Fit=2366236.7098755483 L2_Forecast=3062224.840716141 L2_Test=2284004.5495139677 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=1.5196943509692449 LnQ_Forecast=0.7566924200539923 LnQ_Test=0.030697078650242744 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=1532576.9798038583 MedAE_Forecast=1174093.7836004645 MedAE_Test=2284004.5495139677 -INFO:pyaf.std:MODEL_COMPLEXITY 9.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND ___CN_ConstantTrend 0.4334134887921444 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES ___CN_ConstantTrend_residue_bestCycle_byMAPE None -0.07697130251301254 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag1 0.3837202054406762 -INFO:pyaf.std:AR_MODEL_COEFF 2 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.1690108747508288 -INFO:pyaf.std:AR_MODEL_COEFF 3 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag5 0.11084768043714395 -INFO:pyaf.std:AR_MODEL_COEFF 4 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag4 0.0737896668251396 -INFO:pyaf.std:AR_MODEL_COEFF 5 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.07207812890740686 -INFO:pyaf.std:AR_MODEL_COEFF 6 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag6 0.06444719380128108 -INFO:pyaf.std:AR_MODEL_COEFF 7 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.04223898190641691 -INFO:pyaf.std:AR_MODEL_COEFF 8 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag7 0.027611667006738776 -INFO:pyaf.std:AR_MODEL_COEFF 9 ___CN_ConstantTrend_residue_bestCycle_byMAPE_residue_Lag11 0.010917999401027972 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='__DE' Length=46 Min=3137087.5 Max=13458746.0 Mean=6801307.228260869 StdDev=2441392.868554021 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='___DE' Min=0.0 Max=1.0 Mean=0.3550029995916713 StdDev=0.23653106412637281 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '___DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '___DE_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '___DE_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '___DE_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.2663 MAPE_Forecast=0.2377 MAPE_Test=0.2269 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.2562 SMAPE_Forecast=0.2098 SMAPE_Test=0.2037 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9722 MASE_Forecast=1.0209 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=611129.6148095239 CRPS_Forecast=359666.4795407408 CRPS_Test=434125.5 -INFO:pyaf.std:MODEL_L1 L1_Fit=1780306.3333333333 L1_Forecast=1107360.888888889 L1_Test=868251.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=2608066.128208228 L2_Forecast=1311702.0584794695 L2_Test=868251.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=4.881996969690058 LnQ_Forecast=0.637789234997403 LnQ_Test=0.04180240070935403 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=1312628.0 MedAE_Forecast=974270.5 MedAE_Test=868251.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.32663980308978446 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES ___DE_Lag1Trend_residue_bestCycle_byMAPE None -0.005295466808943522 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='__GB' Length=46 Min=4584449 Max=34054975 Mean=13642437.52173913 StdDev=7330809.134529698 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='___GB' Min=0.0 Max=1.0 Mean=0.30735754501766044 StdDev=0.24875053585842682 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '___GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '___GB_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '___GB_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '___GB_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.3503 MAPE_Forecast=0.1579 MAPE_Test=0.0961 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.3066 SMAPE_Forecast=0.1538 SMAPE_Test=0.1009 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9722 MASE_Forecast=0.9576 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=1822753.3773968255 CRPS_Forecast=427373.42816296295 CRPS_Test=420108.0 -INFO:pyaf.std:MODEL_L1 L1_Fit=4173764.3333333335 L1_Forecast=1230684.111111111 L1_Test=840216.0 -INFO:pyaf.std:MODEL_L2 L2_Fit=5023345.709032571 L2_Forecast=1567222.4394758958 L2_Test=840216.0 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=5.504726879465389 LnQ_Forecast=0.34042384073263765 LnQ_Test=0.01020421109943413 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=4406408.5 MedAE_Forecast=794878.0 MedAE_Test=840216.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.41487691804347165 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES ___GB_Lag1Trend_residue_bestCycle_byMAPE None 0.018627339735978896 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='__US' Length=46 Min=5868951 Max=17185987 Mean=9945897.913043479 StdDev=2510136.266406258 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='___US' Min=0.0 Max=1.0 Mean=0.3602486475295722 StdDev=0.22180156238844326 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '___US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)' [LinearTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL '___US_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL '___US_LinearTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '___US_LinearTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1747 MAPE_Forecast=0.206 MAPE_Test=0.2061 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.1685 SMAPE_Forecast=0.1893 SMAPE_Test=0.1868 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.7125 MASE_Forecast=0.6719 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=330911.6102823222 CRPS_Forecast=351758.476680329 CRPS_Test=752315.9114329685 -INFO:pyaf.std:MODEL_L1 L1_Fit=1755765.339207018 L1_Forecast=1680246.8722647536 L1_Test=1504631.822865937 -INFO:pyaf.std:MODEL_L2 L2_Fit=2246482.338111564 L2_Forecast=2012724.6453706033 L2_Test=1504631.822865937 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=1.5958359651191172 LnQ_Forecast=0.49894384619425475 LnQ_Test=0.03510565466005799 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=1230924.5003771307 MedAE_Forecast=1911710.327253757 MedAE_Test=1504631.822865937 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.4434454797874014, array([-0.11618605])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES ___US_LinearTrend_residue_bestCycle_byMAPE None -0.03950231229611301 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.17069542791499426 -INFO:pyaf.std:AR_MODEL_COEFF 2 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag1 0.14948077036019985 -INFO:pyaf.std:AR_MODEL_COEFF 3 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag6 0.11399716044772525 -INFO:pyaf.std:AR_MODEL_COEFF 4 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.09919630176677452 -INFO:pyaf.std:AR_MODEL_COEFF 5 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag5 0.055910821672062655 -INFO:pyaf.std:AR_MODEL_COEFF 6 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.05018650909681313 -INFO:pyaf.std:AR_MODEL_COEFF 7 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag7 0.048688577337350825 -INFO:pyaf.std:AR_MODEL_COEFF 8 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.03726788290940855 -INFO:pyaf.std:AR_MODEL_COEFF 9 ___US_LinearTrend_residue_bestCycle_byMAPE_residue_Lag3 0.024886010806090403 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Month' TimeMin=2012-01-01T00:00:00.000000 TimeMax=2014-12-01T00:00:00.000000 TimeDelta= Horizon=1 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='__' Length=46 Min=28850872.5 Max=74341125.5 Mean=49180545.10869565 StdDev=11452870.277739465 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='Diff___' Min=-0.3669019273205625 Max=0.3989217316509539 Mean=-0.005214990063724296 StdDev=0.20333918051867547 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE 'Diff_' -INFO:pyaf.std:BEST_DECOMPOSITION 'Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [ConstantTrend + Cycle_None + AR] -INFO:pyaf.std:TREND_DETAIL 'Diff____ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL 'Diff____ConstantTrend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL 'Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)' [AR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.1974 MAPE_Forecast=0.1582 MAPE_Test=0.3854 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.228 SMAPE_Forecast=0.1376 SMAPE_Test=0.3232 -INFO:pyaf.std:MODEL_MASE MASE_Fit=1.3496 MASE_Forecast=0.7693 MASE_Test=None -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=2524990.1580100344 CRPS_Forecast=1585562.9060223447 CRPS_Test=6912879.444178477 -INFO:pyaf.std:MODEL_L1 L1_Fit=11306036.716152223 L1_Forecast=5426306.846897107 L1_Test=13825758.888356954 -INFO:pyaf.std:MODEL_L2 L2_Fit=14879806.713278444 L2_Forecast=7143604.201168243 L2_Test=13825758.888356954 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=3.1188039002470735 LnQ_Forecast=0.32333508855881976 LnQ_Test=0.10628368641254886 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=8851627.340673726 MedAE_Forecast=4011540.010617405 MedAE_Test=13825758.888356954 -INFO:pyaf.std:MODEL_COMPLEXITY 10.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:DIFFERENCING_TRANSFORMATION Difference 0.39420760091178214 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND Diff____ConstantTrend -0.0016615207657781096 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES Diff____ConstantTrend_residue_bestCycle_byMAPE None -0.022848328629871545 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_COEFF 1 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag2 -0.19357185579187094 -INFO:pyaf.std:AR_MODEL_COEFF 2 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag3 -0.17277692764844987 -INFO:pyaf.std:AR_MODEL_COEFF 3 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag9 -0.1373027654209258 -INFO:pyaf.std:AR_MODEL_COEFF 4 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag10 -0.11354904367127212 -INFO:pyaf.std:AR_MODEL_COEFF 5 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag5 0.07262181395061626 -INFO:pyaf.std:AR_MODEL_COEFF 6 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag4 -0.0714983136186754 -INFO:pyaf.std:AR_MODEL_COEFF 7 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag11 0.028623910259595556 -INFO:pyaf.std:AR_MODEL_COEFF 8 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag6 0.020040077282520368 -INFO:pyaf.std:AR_MODEL_COEFF 9 Diff____ConstantTrend_residue_bestCycle_byMAPE_residue_Lag8 -0.015006540139023403 -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.timing:('OPERATION_START', ('PLOTTING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__']})) -/home/antoine/dev/python/packages/timeseries/pyaf/pyaf/TS/Plots.py:58: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). - fig, axs = plt.subplots(ncols=2, figsize=(32, 16)) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 80.157, ('PLOTTING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__']})) -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_FORECAST') -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Horizon': 4})) - -RangeIndex: 50 entries, 0 to 49 -Columns: 177 entries, Month to RHÔNE_ROUGE_US -dtypes: datetime64[ns](1), float64(56), int64(120) -memory usage: 69.3 KB -dict_keys(['Structure', 'Models']) -{0: {'ALSACE_BLANC_BE': [], 'ALSACE_BLANC_CN': [], 'ALSACE_BLANC_DE': [], 'ALSACE_BLANC_GB': [], 'ALSACE_BLANC_US': [], 'BEAUJOLAIS_ROUGE_BE': [], 'BEAUJOLAIS_ROUGE_CN': [], 'BEAUJOLAIS_ROUGE_DE': [], 'BEAUJOLAIS_ROUGE_GB': [], 'BEAUJOLAIS_ROUGE_US': [], 'BORDEAUX_BLANC_BE': [], 'BORDEAUX_BLANC_CN': [], 'BORDEAUX_BLANC_DE': [], 'BORDEAUX_BLANC_GB': [], 'BORDEAUX_BLANC_US': [], 'BORDEAUX_ROUGE_BE': [], 'BORDEAUX_ROUGE_CN': [], 'BORDEAUX_ROUGE_DE': [], 'BORDEAUX_ROUGE_GB': [], 'BORDEAUX_ROUGE_US': []}, 1: {'_BLANC_BE': ['ALSACE_BLANC_BE', 'BORDEAUX_BLANC_BE'], '_BLANC_CN': ['ALSACE_BLANC_CN', 'BORDEAUX_BLANC_CN'], '_BLANC_DE': ['ALSACE_BLANC_DE', 'BORDEAUX_BLANC_DE'], '_BLANC_GB': ['ALSACE_BLANC_GB', 'BORDEAUX_BLANC_GB'], '_BLANC_US': ['ALSACE_BLANC_US', 'BORDEAUX_BLANC_US'], '_ROUGE_BE': ['BEAUJOLAIS_ROUGE_BE', 'BORDEAUX_ROUGE_BE'], '_ROUGE_CN': ['BEAUJOLAIS_ROUGE_CN', 'BORDEAUX_ROUGE_CN'], '_ROUGE_DE': ['BEAUJOLAIS_ROUGE_DE', 'BORDEAUX_ROUGE_DE'], '_ROUGE_GB': ['BEAUJOLAIS_ROUGE_GB', 'BORDEAUX_ROUGE_GB'], '_ROUGE_US': ['BEAUJOLAIS_ROUGE_US', 'BORDEAUX_ROUGE_US']}, 2: {'__BE': ['_BLANC_BE', '_ROUGE_BE'], '__CN': ['_BLANC_CN', '_ROUGE_CN'], '__DE': ['_BLANC_DE', '_ROUGE_DE'], '__GB': ['_BLANC_GB', '_ROUGE_GB'], '__US': ['_BLANC_US', '_ROUGE_US']}, 3: {'__': ['__BE', '__CN', '__DE', '__GB', '__US']}} -dict_keys(['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__']) -{'Dataset': {'Time': {'TimeVariable': 'Month', 'TimeMinMax': ['2012-01-01 00:00:00', '2016-05-01 00:00:00'], 'Horizon': 1}, 'Signal': 'BORDEAUX_ROUGE_CN', 'Training_Signal_Length': 46}, 'Model': {'Best_Decomposition': 'Diff_BORDEAUX_ROUGE_CN_ConstantTrend_residue_bestCycle_byMAPE_residue_AR(11)', 'Signal_Decomposition_Type': 'T+S+R', 'Signal_Transoformation': 'Difference', 'Trend': 'ConstantTrend', 'Cycle': 'Cycle_None', 'AR_Model': 'AR'}, 'Model_Performance': {'MAPE': 0.2431, 'MASE': 0.697, 'CRPS': 414909.5477440574, 'MAE': 2095071.2871508482, 'RMSE': 2712945.66113926, 'MedAE': 1591622.6505130827, 'LnQ': 0.7337451269271154, 'COMPLEXITY': 10.0}} - Model RMSE MAPE -23 _BLANC_GB 1.396166e+05 0.1098 -13 BORDEAUX_BLANC_GB 8.861629e+04 0.1116 -22 _BLANC_DE 1.416086e+05 0.1370 -3 ALSACE_BLANC_GB 6.648017e+04 0.1402 -34 __GB 1.567222e+06 0.1579 -30 __ 7.143604e+06 0.1582 -18 BORDEAUX_ROUGE_GB 1.259435e+06 0.1592 -28 _ROUGE_GB 1.442702e+06 0.1611 -15 BORDEAUX_ROUGE_BE 8.702642e+05 0.1779 -25 _ROUGE_BE 8.828202e+05 0.1808 -31 __BE 1.304601e+06 0.1846 -2 ALSACE_BLANC_DE 1.447695e+05 0.1906 -24 _BLANC_US 4.062902e+05 0.1927 -29 _ROUGE_US 1.585113e+06 0.1928 -14 BORDEAUX_BLANC_US 2.191494e+05 0.1983 -35 __US 2.012725e+06 0.2060 -19 BORDEAUX_ROUGE_US 1.423096e+06 0.2095 -33 __DE 1.311702e+06 0.2377 -4 ALSACE_BLANC_US 2.021724e+05 0.2382 -32 __CN 3.062225e+06 0.2397 -27 _ROUGE_DE 1.118073e+06 0.2428 -16 BORDEAUX_ROUGE_CN 2.712946e+06 0.2431 -26 _ROUGE_CN 2.815902e+06 0.2493 -12 BORDEAUX_BLANC_DE 2.013873e+05 0.2533 -21 _BLANC_CN 4.472210e+05 0.2550 -20 _BLANC_BE 5.234552e+05 0.2689 -17 BORDEAUX_ROUGE_DE 1.186137e+06 0.2720 -9 BEAUJOLAIS_ROUGE_US 7.744356e+05 0.2867 -0 ALSACE_BLANC_BE 4.448373e+05 0.2979 -10 BORDEAUX_BLANC_BE 2.176789e+05 0.3043 -11 BORDEAUX_BLANC_CN 4.771520e+05 0.3060 -8 BEAUJOLAIS_ROUGE_GB 4.840428e+05 0.3365 -5 BEAUJOLAIS_ROUGE_BE 1.046535e+05 0.4232 -1 ALSACE_BLANC_CN 8.633768e+04 0.5266 -7 BEAUJOLAIS_ROUGE_DE 1.558717e+05 0.6144 -6 BEAUJOLAIS_ROUGE_CN 1.838912e+05 0.8131 - -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Month_Normalized_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Month_Normalized_^3_x', 'Month_Normalized_x', 'Month_Normalized_^2_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 9.486, ('FORECASTING', {'Signals': ['ALSACE_BLANC_BE', 'ALSACE_BLANC_CN', 'ALSACE_BLANC_DE', 'ALSACE_BLANC_GB', 'ALSACE_BLANC_US', 'BEAUJOLAIS_ROUGE_BE', 'BEAUJOLAIS_ROUGE_CN', 'BEAUJOLAIS_ROUGE_DE', 'BEAUJOLAIS_ROUGE_GB', 'BEAUJOLAIS_ROUGE_US', 'BORDEAUX_BLANC_BE', 'BORDEAUX_BLANC_CN', 'BORDEAUX_BLANC_DE', 'BORDEAUX_BLANC_GB', 'BORDEAUX_BLANC_US', 'BORDEAUX_ROUGE_BE', 'BORDEAUX_ROUGE_CN', 'BORDEAUX_ROUGE_DE', 'BORDEAUX_ROUGE_GB', 'BORDEAUX_ROUGE_US', '_BLANC_BE', '_BLANC_CN', '_BLANC_DE', '_BLANC_GB', '_BLANC_US', '_ROUGE_BE', '_ROUGE_CN', '_ROUGE_DE', '_ROUGE_GB', '_ROUGE_US', '__BE', '__CN', '__DE', '__GB', '__US', '__'], 'Horizon': 4})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU', 'TD', 'MO', 'OC'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD AHP_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD PHA_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_MIDDLE_OUT_METHOD MO -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD OC -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 9.613, 'HIERARCHICAL_FORECAST') -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__GB' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__GB_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__GB_BU_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__GB_PHA_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__GB_AHP_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__GB_MO_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__GB_OC_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__US' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__US_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__US_BU_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__US_PHA_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__US_AHP_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__US_MO_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__US_OC_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__DE' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__DE_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__DE_BU_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__DE_PHA_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__DE_AHP_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__DE_MO_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__DE_OC_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__BE' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__BE_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__BE_BU_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__BE_PHA_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__BE_AHP_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__BE_MO_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__BE_OC_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__CN' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__CN_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__CN_BU_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__CN_PHA_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__CN_AHP_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__CN_MO_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__CN_OC_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '__' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '___Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '___BU_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '___PHA_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '___AHP_TD_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '___MO_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -/usr/lib/python3/dist-packages/pandas/plotting/_matplotlib/core.py:633: UserWarning: The handle has a label of '___OC_Forecast' which cannot be automatically added to the legend. - ax.legend(handles, labels, loc="best", title=title) -WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. diff --git a/tests/references/bugs/issue_56/issue_56_order1.log b/tests/references/bugs/issue_56/issue_56_order1.log deleted file mode 100644 index 24d83438d..000000000 --- a/tests/references/bugs/issue_56/issue_56_order1.log +++ /dev/null @@ -1,430 +0,0 @@ -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_TRAINING') -INFO:pyaf.timing:('OPERATION_START', ('SIGNAL_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', 'None', '_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', '_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': '_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'Diff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'RelDiff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'CumSum_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': '_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'RelDiff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'CumSum_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'Diff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.885, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'CumSum_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': '_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.944, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': '_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'Diff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.985, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'Diff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.042, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': '_NSW_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.033, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'CumSum_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'RelDiff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'CumSum_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.153, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'RelDiff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': '_VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.189, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'Diff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.216, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'RelDiff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'Diff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'RelDiff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'CumSum_VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.451, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': '_VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': '__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.56, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'Diff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': 'Diff__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.525, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'CumSum_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.482, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': '_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': 'RelDiff__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.461, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'Diff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': 'CumSum__female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': '__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.709, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'RelDiff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.503, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'CumSum_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': 'Diff__male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': 'RelDiff__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.701, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'RelDiff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.556, ('TRAINING', {'Signal': '_female', 'Transformation': '__female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': 'CumSum__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.442, ('TRAINING', {'Signal': '_female', 'Transformation': 'Diff__female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': '__'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': 'Diff__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.46, ('TRAINING', {'Signal': '_male', 'Transformation': '__male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': 'RelDiff__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.579, ('TRAINING', {'Signal': '_female', 'Transformation': 'RelDiff__female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': 'CumSum__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.455, ('TRAINING', {'Signal': '_male', 'Transformation': 'Diff__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.569, ('TRAINING', {'Signal': '_female', 'Transformation': 'CumSum__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.387, ('TRAINING', {'Signal': '_male', 'Transformation': 'CumSum__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.361, ('TRAINING', {'Signal': '_', 'Transformation': '__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.578, ('TRAINING', {'Signal': '_male', 'Transformation': 'RelDiff__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.436, ('TRAINING', {'Signal': '_', 'Transformation': 'Diff__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.39, ('TRAINING', {'Signal': '_', 'Transformation': 'CumSum__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.515, ('TRAINING', {'Signal': '_', 'Transformation': 'RelDiff__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 2.854, ('SIGNAL_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', 'None', '_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', '_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('FINALIZE_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]), ('NSW_male', [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]), ('VIC_female', [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]), ('VIC_male', [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]), ('_female', [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]), ('_male', [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]), ('_', [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')])], 'Cores': 7})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW_female', 'Transformations': [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': 'NSW_female', 'Transformations': [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_female', 'Model': '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW_male', 'Transformations': [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_female', 'Model': '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': 'NSW_male', 'Transformations': [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_male', 'Model': '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC_female', 'Transformations': [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.044, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_male', 'Model': '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': 'VIC_female', 'Transformations': [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_female', 'Model': '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_female', 'Model': '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC_male', 'Transformations': [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.016, ('MODEL_SELECTION', {'Signal': 'VIC_male', 'Transformations': [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_male', 'Model': '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_female', 'Transformations': [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.016, ('MODEL_SELECTION', {'Signal': '_female', 'Transformations': [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_female', 'Model': '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.056, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_male', 'Model': '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.042, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_female', 'Model': '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_female'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_male', 'Transformations': [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': '_male', 'Transformations': [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_male', 'Model': '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_male', 'Model': '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_male'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_', 'Transformations': [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': '_', 'Transformations': [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_', 'Model': '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.042, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_', 'Model': '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.389, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.435, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.385, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.345, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.413, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.329, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.448, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.17, ('FINALIZE_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]), ('NSW_male', [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]), ('VIC_female', [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]), ('VIC_male', [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]), ('_female', [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]), ('_male', [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]), ('_', [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')])], 'Cores': 7})) -INFO:pyaf.hierarchical:TRAINING_HIERARCHICAL_MODEL_COMPUTE_TOP_DOWN_HISTORICAL_PROPORTIONS -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'row_number_x', 'Index_Normalized_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.804, ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU', 'TD', 'MO', 'OC'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD AHP_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD PHA_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_MIDDLE_OUT_METHOD MO -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD OC -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD -INFO:pyaf.hierarchical:STRUCTURE [0, 1, 2] -INFO:pyaf.hierarchical:DATASET_COLUMNS Index(['Index', 'NSW_female', 'NSW_female_Forecast', - 'NSW_female_Forecast_Lower_Bound', 'NSW_female_Forecast_Upper_Bound', - 'NSW_male', 'NSW_male_Forecast', 'NSW_male_Forecast_Lower_Bound', - 'NSW_male_Forecast_Upper_Bound', 'VIC_female', 'VIC_female_Forecast', - 'VIC_female_Forecast_Lower_Bound', 'VIC_female_Forecast_Upper_Bound', - 'VIC_male', 'VIC_male_Forecast', 'VIC_male_Forecast_Lower_Bound', - 'VIC_male_Forecast_Upper_Bound', '_female', '_female_Forecast', - '_female_Forecast_Lower_Bound', '_female_Forecast_Upper_Bound', '_male', - '_male_Forecast', '_male_Forecast_Lower_Bound', - '_male_Forecast_Upper_Bound', '_', '__Forecast', - '__Forecast_Lower_Bound', '__Forecast_Upper_Bound', - 'NSW_female_BU_Forecast', 'NSW_male_BU_Forecast', - 'VIC_female_BU_Forecast', 'VIC_male_BU_Forecast', '_female_BU_Forecast', - '_male_BU_Forecast', '__BU_Forecast', '__AHP_TD_Forecast', - '_female_AHP_TD_Forecast', '_male_AHP_TD_Forecast', - 'NSW_female_AHP_TD_Forecast', 'VIC_female_AHP_TD_Forecast', - 'NSW_male_AHP_TD_Forecast', 'VIC_male_AHP_TD_Forecast', - '__PHA_TD_Forecast', '_female_PHA_TD_Forecast', '_male_PHA_TD_Forecast', - 'NSW_female_PHA_TD_Forecast', 'VIC_female_PHA_TD_Forecast', - 'NSW_male_PHA_TD_Forecast', 'VIC_male_PHA_TD_Forecast', - '_female_MO_Forecast', '_male_MO_Forecast', 'NSW_female_MO_Forecast', - 'VIC_female_MO_Forecast', 'NSW_male_MO_Forecast', - 'VIC_male_MO_Forecast', '__MO_Forecast', 'NSW_female_OC_Forecast', - 'NSW_male_OC_Forecast', 'VIC_female_OC_Forecast', - 'VIC_male_OC_Forecast', '_female_OC_Forecast', '_male_OC_Forecast', - '__OC_Forecast'], - dtype='object') -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (0, ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (1, ['_female', '_male']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (2, ['_']) -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0782, 'RMSE': 61.88312394961419, 'MAE': 47.338918335013005, 'SMAPE': 0.0765, 'ErrorMean': 3.1970833853642753, 'ErrorStdDev': 61.80048290742024, 'R2': 0.911769621603849, 'Pearson': 0.9574962766489252, 'MedAE': 39.15376408516778, 'LnQ': 0.5501273412625806} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0782, 'RMSE': 61.88312394961419, 'MAE': 47.338918335013005, 'SMAPE': 0.0765, 'ErrorMean': 3.1970833853642753, 'ErrorStdDev': 61.80048290742024, 'R2': 0.911769621603849, 'Pearson': 0.9574962766489252, 'MedAE': 39.15376408516778, 'LnQ': 0.5501273412625806} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629301, 'MAE': 43.25423728813559, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830509, 'ErrorStdDev': 56.54782418951946, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130372, 'MedAE': 35.0, 'LnQ': 0.449617560177566} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629301, 'MAE': 43.25423728813559, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830509, 'ErrorStdDev': 56.54782418951946, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130372, 'MedAE': 35.0, 'LnQ': 0.449617560177566} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0813, 'RMSE': 62.32278723251837, 'MAE': 48.70371692503398, 'SMAPE': 0.079, 'ErrorMean': 7.869221952578178, 'ErrorStdDev': 61.82398526697237, 'R2': 0.9105114608134931, 'Pearson': 0.9559136222127097, 'MedAE': 39.28809343911337, 'LnQ': 0.5820060772164425} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0813, 'RMSE': 62.32278723251837, 'MAE': 48.70371692503398, 'SMAPE': 0.079, 'ErrorMean': 7.869221952578178, 'ErrorStdDev': 61.82398526697237, 'R2': 0.9105114608134931, 'Pearson': 0.9559136222127097, 'MedAE': 39.28809343911337, 'LnQ': 0.5820060772164425} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629303, 'MAE': 43.254237288135656, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830838, 'ErrorStdDev': 56.547824189519446, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130373, 'MedAE': 35.00000000000023, 'LnQ': 0.449617560177567} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629303, 'MAE': 43.254237288135656, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830838, 'ErrorStdDev': 56.547824189519446, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130373, 'MedAE': 35.00000000000023, 'LnQ': 0.449617560177567} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0799, 'RMSE': 62.016771833343164, 'MAE': 47.68929397311254, 'SMAPE': 0.0775, 'ErrorMean': 8.015543376062395, 'ErrorStdDev': 61.49659383262953, 'R2': 0.9113881109148605, 'Pearson': 0.9574962766489251, 'MedAE': 38.894624929346264, 'LnQ': 0.5692992423976353} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0799, 'RMSE': 62.016771833343164, 'MAE': 47.68929397311254, 'SMAPE': 0.0775, 'ErrorMean': 8.015543376062395, 'ErrorStdDev': 61.49659383262953, 'R2': 0.9113881109148605, 'Pearson': 0.9574962766489251, 'MedAE': 38.894624929346264, 'LnQ': 0.5692992423976353} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 70.39300898637984, 'MAE': 55.09053975912032, 'SMAPE': 0.0667, 'ErrorMean': 7.6285482163500955, 'ErrorStdDev': 69.97843215068035, 'R2': 0.9319325977712878, 'Pearson': 0.9663700630732057, 'MedAE': 48.497307675375, 'LnQ': 0.43005490632626886} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 70.39300898637984, 'MAE': 55.09053975912032, 'SMAPE': 0.0667, 'ErrorMean': 7.6285482163500955, 'ErrorStdDev': 69.97843215068035, 'R2': 0.9319325977712878, 'Pearson': 0.9663700630732057, 'MedAE': 48.497307675375, 'LnQ': 0.43005490632626886} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268225, 'MAE': 54.45762711864407, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169491, 'ErrorStdDev': 70.30053268037926, 'R2': 0.9304286389667543, 'Pearson': 0.9654607890731268, 'MedAE': 43.0, 'LnQ': 0.42852837933766935} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268225, 'MAE': 54.45762711864407, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169491, 'ErrorStdDev': 70.30053268037926, 'R2': 0.9304286389667543, 'Pearson': 0.9654607890731268, 'MedAE': 43.0, 'LnQ': 0.42852837933766935} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0699, 'RMSE': 71.08956064805535, 'MAE': 56.25353847722968, 'SMAPE': 0.0679, 'ErrorMean': 11.006816792816519, 'ErrorStdDev': 70.23229753626826, 'R2': 0.9305788542591356, 'Pearson': 0.9663934541393859, 'MedAE': 47.975741620046165, 'LnQ': 0.44073343304086815} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0699, 'RMSE': 71.08956064805535, 'MAE': 56.25353847722968, 'SMAPE': 0.0679, 'ErrorMean': 11.006816792816519, 'ErrorStdDev': 70.23229753626826, 'R2': 0.9305788542591356, 'Pearson': 0.9663934541393859, 'MedAE': 47.975741620046165, 'LnQ': 0.44073343304086815} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268222, 'MAE': 54.457627118644034, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169328, 'ErrorStdDev': 70.30053268037925, 'R2': 0.9304286389667544, 'Pearson': 0.9654607890731268, 'MedAE': 42.99999999999977, 'LnQ': 0.4285283793376688} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268222, 'MAE': 54.457627118644034, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169328, 'ErrorStdDev': 70.30053268037925, 'R2': 0.9304286389667544, 'Pearson': 0.9654607890731268, 'MedAE': 42.99999999999977, 'LnQ': 0.4285283793376688} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0696, 'RMSE': 70.70421689408323, 'MAE': 55.925572084650426, 'SMAPE': 0.0677, 'ErrorMean': 10.858812414263125, 'ErrorStdDev': 69.86538828030237, 'R2': 0.931329414600923, 'Pearson': 0.9663700630732055, 'MedAE': 49.799935402255414, 'LnQ': 0.4385187714181826} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0696, 'RMSE': 70.70421689408323, 'MAE': 55.925572084650426, 'SMAPE': 0.0677, 'ErrorMean': 10.858812414263125, 'ErrorStdDev': 69.86538828030237, 'R2': 0.931329414600923, 'Pearson': 0.9663700630732055, 'MedAE': 49.799935402255414, 'LnQ': 0.4385187714181826} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.086, 'RMSE': 42.9202146915974, 'MAE': 34.20080687656886, 'SMAPE': 0.084, 'ErrorMean': 8.291636139123094, 'ErrorStdDev': 42.111680081768306, 'R2': 0.8769407428870463, 'Pearson': 0.9409954918068553, 'MedAE': 29.537947573261476, 'LnQ': 0.6662770902692463} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.086, 'RMSE': 42.9202146915974, 'MAE': 34.20080687656886, 'SMAPE': 0.084, 'ErrorMean': 8.291636139123094, 'ErrorStdDev': 42.111680081768306, 'R2': 0.8769407428870463, 'Pearson': 0.9409954918068553, 'MedAE': 29.537947573261476, 'LnQ': 0.6662770902692463} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.6959597006186, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711864, 'ErrorStdDev': 44.40578987123082, 'R2': 0.8665473963737461, 'Pearson': 0.9324933676163617, 'MedAE': 35.0, 'LnQ': 0.7451704328409279} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.6959597006186, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711864, 'ErrorStdDev': 44.40578987123082, 'R2': 0.8665473963737461, 'Pearson': 0.9324933676163617, 'MedAE': 35.0, 'LnQ': 0.7451704328409279} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0877, 'RMSE': 43.077644041671846, 'MAE': 34.847752172270496, 'SMAPE': 0.0865, 'ErrorMean': 5.147727199964073, 'ErrorStdDev': 42.76896445853858, 'R2': 0.8760363360058929, 'Pearson': 0.9400739653817466, 'MedAE': 30.579996222138334, 'LnQ': 0.6941044814146825} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0877, 'RMSE': 43.077644041671846, 'MAE': 34.847752172270496, 'SMAPE': 0.0865, 'ErrorMean': 5.147727199964073, 'ErrorStdDev': 42.76896445853858, 'R2': 0.8760363360058929, 'Pearson': 0.9400739653817466, 'MedAE': 30.579996222138334, 'LnQ': 0.6941044814146825} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.69595970061861, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711795, 'ErrorStdDev': 44.40578987123083, 'R2': 0.866547396373746, 'Pearson': 0.9324933676163618, 'MedAE': 35.000000000000114, 'LnQ': 0.7451704328409281} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.69595970061861, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711795, 'ErrorStdDev': 44.40578987123083, 'R2': 0.866547396373746, 'Pearson': 0.9324933676163618, 'MedAE': 35.000000000000114, 'LnQ': 0.7451704328409281} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0844, 'RMSE': 42.28932734562721, 'MAE': 33.615862395855515, 'SMAPE': 0.0829, 'ErrorMean': 5.243444765963134, 'ErrorStdDev': 41.963001493362064, 'R2': 0.8805318682434521, 'Pearson': 0.9409954918068553, 'MedAE': 26.509407046537348, 'LnQ': 0.6525889736279286} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0844, 'RMSE': 42.28932734562721, 'MAE': 33.615862395855515, 'SMAPE': 0.0829, 'ErrorMean': 5.243444765963134, 'ErrorStdDev': 41.963001493362064, 'R2': 0.8805318682434521, 'Pearson': 0.9409954918068553, 'MedAE': 26.509407046537348, 'LnQ': 0.6525889736279286} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0755, 'RMSE': 49.09404571362927, 'MAE': 39.51549185862075, 'SMAPE': 0.0741, 'ErrorMean': 11.899681411704913, 'ErrorStdDev': 47.630063057189474, 'R2': 0.9036564131984738, 'Pearson': 0.955962802325991, 'MedAE': 29.972638045383064, 'LnQ': 0.49730897492268006} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0755, 'RMSE': 49.09404571362927, 'MAE': 39.51549185862075, 'SMAPE': 0.0741, 'ErrorMean': 11.899681411704913, 'ErrorStdDev': 47.630063057189474, 'R2': 0.9036564131984738, 'Pearson': 0.955962802325991, 'MedAE': 29.972638045383064, 'LnQ': 0.49730897492268006} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.610169491525426, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830509, 'ErrorStdDev': 53.23719370374587, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982798} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.610169491525426, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830509, 'ErrorStdDev': 53.23719370374587, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982798} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0767, 'RMSE': 50.005918797978644, 'MAE': 40.2321040264098, 'SMAPE': 0.0754, 'ErrorMean': 6.993183207183485, 'ErrorStdDev': 49.51451608832305, 'R2': 0.900044202610638, 'Pearson': 0.9511536267019925, 'MedAE': 30.30858915894885, 'LnQ': 0.5113259908693725} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0767, 'RMSE': 50.005918797978644, 'MAE': 40.2321040264098, 'SMAPE': 0.0754, 'ErrorMean': 6.993183207183485, 'ErrorStdDev': 49.51451608832305, 'R2': 0.900044202610638, 'Pearson': 0.9511536267019925, 'MedAE': 30.30858915894885, 'LnQ': 0.5113259908693725} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.61016949152541, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830434, 'ErrorStdDev': 53.237193703745874, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982797} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.61016949152541, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830434, 'ErrorStdDev': 53.237193703745874, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982797} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.074, 'RMSE': 47.833484231171475, 'MAE': 38.97254732719988, 'SMAPE': 0.0732, 'ErrorMean': 6.899148596253585, 'ErrorStdDev': 47.3333282406862, 'R2': 0.9085404209403665, 'Pearson': 0.9559628023259911, 'MedAE': 31.343337011815947, 'LnQ': 0.48202280330220065} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.074, 'RMSE': 47.833484231171475, 'MAE': 38.97254732719988, 'SMAPE': 0.0732, 'ErrorMean': 6.899148596253585, 'ErrorStdDev': 47.3333282406862, 'R2': 0.9085404209403665, 'Pearson': 0.9559628023259911, 'MedAE': 31.343337011815947, 'LnQ': 0.48202280330220065} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__BU_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__BU_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__MO_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__MO_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__OC_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542367, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__OC_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542367, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.065, 'RMSE': 80.93013515525986, 'MAE': 64.25576318492837, 'SMAPE': 0.0638, 'ErrorMean': 11.48871952448701, 'ErrorStdDev': 80.11052427700305, 'R2': 0.9378307586510127, 'Pearson': 0.9692861115856176, 'MedAE': 52.187438167617074, 'LnQ': 0.3841374093261447} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.065, 'RMSE': 80.93013515525986, 'MAE': 64.25576318492837, 'SMAPE': 0.0638, 'ErrorMean': 11.48871952448701, 'ErrorStdDev': 80.11052427700305, 'R2': 0.9378307586510127, 'Pearson': 0.9692861115856176, 'MedAE': 52.187438167617074, 'LnQ': 0.3841374093261447} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715814, 'MAE': 67.86440677966105, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542546, 'ErrorStdDev': 81.55158324444344, 'R2': 0.9352639961603366, 'Pearson': 0.9679228999601348, 'MedAE': 60.99999999999977, 'LnQ': 0.41185987784926237} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715814, 'MAE': 67.86440677966105, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542546, 'ErrorStdDev': 81.55158324444344, 'R2': 0.9352639961603366, 'Pearson': 0.9679228999601348, 'MedAE': 60.99999999999977, 'LnQ': 0.41185987784926237} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0655, 'RMSE': 81.16027794640222, 'MAE': 64.63762627011437, 'SMAPE': 0.0642, 'ErrorMean': 13.25898814202565, 'ErrorStdDev': 80.06990664280112, 'R2': 0.937476671847496, 'Pearson': 0.9692861115856175, 'MedAE': 54.258660135117, 'LnQ': 0.3876105970532517} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0655, 'RMSE': 81.16027794640222, 'MAE': 64.63762627011437, 'SMAPE': 0.0642, 'ErrorMean': 13.25898814202565, 'ErrorStdDev': 80.06990664280112, 'R2': 0.937476671847496, 'Pearson': 0.9692861115856175, 'MedAE': 54.258660135117, 'LnQ': 0.3876105970532517} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0578, 'RMSE': 94.32738181170552, 'MAE': 75.05891277075176, 'SMAPE': 0.0567, 'ErrorMean': 19.528229628054923, 'ErrorStdDev': 92.28381877146843, 'R2': 0.9500715813634494, 'Pearson': 0.9758202550657132, 'MedAE': 50.11718159567317, 'LnQ': 0.3050309972891128} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0578, 'RMSE': 94.32738181170552, 'MAE': 75.05891277075176, 'SMAPE': 0.0567, 'ErrorMean': 19.528229628054923, 'ErrorStdDev': 92.28381877146843, 'R2': 0.9500715813634494, 'Pearson': 0.9758202550657132, 'MedAE': 50.11718159567317, 'LnQ': 0.3050309972891128} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217488, 'MAE': 77.49152542372875, 'SMAPE': 0.0576, 'ErrorMean': 17.999999999999623, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.9740333322253134, 'MedAE': 57.999999999999545, 'LnQ': 0.3148960747823484} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217488, 'MAE': 77.49152542372875, 'SMAPE': 0.0576, 'ErrorMean': 17.999999999999623, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.9740333322253134, 'MedAE': 57.999999999999545, 'LnQ': 0.3148960747823484} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0576, 'RMSE': 93.96986777755437, 'MAE': 74.89426726951811, 'SMAPE': 0.0565, 'ErrorMean': 17.75796101051672, 'ErrorStdDev': 92.27670817102232, 'R2': 0.9504493355809386, 'Pearson': 0.9758202550657132, 'MedAE': 51.06901192366706, 'LnQ': 0.30266170991814867} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0576, 'RMSE': 93.96986777755437, 'MAE': 74.89426726951811, 'SMAPE': 0.0565, 'ErrorMean': 17.75796101051672, 'ErrorStdDev': 92.27670817102232, 'R2': 0.9504493355809386, 'Pearson': 0.9758202550657132, 'MedAE': 51.06901192366706, 'LnQ': 0.30266170991814867} -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 5.213, 'HIERARCHICAL_TRAINING') -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW_female' Length=59 Min=270 Max=1000 Mean=650.9322033898305 StdDev=208.33544206535956 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW_female' Min=0.0 Max=1.0 Mean=0.5218249361504528 StdDev=0.2853910165278899 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_female_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0694 MAPE_Forecast=0.0694 MAPE_Test=0.0694 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0683 SMAPE_Forecast=0.0683 SMAPE_Test=0.0683 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=57.710539467312344 CRPS_Forecast=57.710539467312344 CRPS_Test=57.710539467312344 -INFO:pyaf.std:MODEL_L1 L1_Fit=43.25423728813559 L1_Forecast=43.25423728813559 L1_Test=43.25423728813559 -INFO:pyaf.std:MODEL_L2 L2_Fit=57.10145594629301 L2_Forecast=57.10145594629301 L2_Test=57.10145594629301 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.449617560177566 LnQ_Forecast=0.449617560177566 LnQ_Test=0.449617560177566 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=35.0 MedAE_Forecast=35.0 MedAE_Test=35.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6410958904109589 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _NSW_female_Lag1Trend_residue_bestCycle_byMAPE None -0.012328767123287676 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW_male' Length=59 Min=349 Max=1264 Mean=881.8305084745763 StdDev=269.81118021227 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW_male' Min=0.0 Max=1.0 Mean=0.5823284245623784 StdDev=0.29487560678936614 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_male_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0666 MAPE_Forecast=0.0666 MAPE_Test=0.0666 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0653 SMAPE_Forecast=0.0653 SMAPE_Test=0.0653 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=72.73004358353509 CRPS_Forecast=72.73004358353509 CRPS_Test=72.73004358353509 -INFO:pyaf.std:MODEL_L1 L1_Fit=54.45762711864407 L1_Forecast=54.45762711864407 L1_Test=54.45762711864407 -INFO:pyaf.std:MODEL_L2 L2_Fit=71.16643181268225 L2_Forecast=71.16643181268225 L2_Test=71.16643181268225 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.42852837933766935 LnQ_Forecast=0.42852837933766935 LnQ_Test=0.42852837933766935 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=43.0 MedAE_Forecast=43.0 MedAE_Test=43.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.7136612021857923 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _NSW_male_Lag1Trend_residue_bestCycle_byMAPE None -0.007650273224043769 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC_female' Length=59 Min=174 Max=656 Mean=425.8135593220339 StdDev=122.35021622116213 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC_female' Min=0.0 Max=1.0 Mean=0.5224347703776638 StdDev=0.2538386228654816 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_female_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0908 MAPE_Forecast=0.0908 MAPE_Test=0.0908 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.089 SMAPE_Forecast=0.089 SMAPE_Test=0.089 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=33.12639612590799 CRPS_Forecast=33.12639612590799 CRPS_Test=33.12639612590799 -INFO:pyaf.std:MODEL_L1 L1_Fit=35.932203389830505 L1_Forecast=35.932203389830505 L1_Test=35.932203389830505 -INFO:pyaf.std:MODEL_L2 L2_Fit=44.6959597006186 L2_Forecast=44.6959597006186 L2_Test=44.6959597006186 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.7451704328409279 LnQ_Forecast=0.7451704328409279 LnQ_Test=0.7451704328409279 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=35.0 MedAE_Forecast=35.0 MedAE_Test=35.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6473029045643154 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _VIC_female_Lag1Trend_residue_bestCycle_byMAPE None -0.008298755186722018 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC_male' Length=59 Min=253 Max=841 Mean=560.271186440678 StdDev=158.16756085042223 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC_male' Min=0.0 Max=1.0 Mean=0.5225700449671394 StdDev=0.26899245042588815 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_male_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0852 MAPE_Forecast=0.0852 MAPE_Test=0.0852 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0834 SMAPE_Forecast=0.0834 SMAPE_Test=0.0834 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=42.76509249394673 CRPS_Forecast=42.76509249394673 CRPS_Test=42.76509249394673 -INFO:pyaf.std:MODEL_L1 L1_Fit=43.610169491525426 L1_Forecast=43.610169491525426 L1_Test=43.610169491525426 -INFO:pyaf.std:MODEL_L2 L2_Fit=53.68662996769434 L2_Forecast=53.68662996769434 L2_Test=53.68662996769434 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.6365821273982798 LnQ_Forecast=0.6365821273982798 LnQ_Test=0.6365821273982798 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=40.0 MedAE_Forecast=40.0 MedAE_Test=40.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6955782312925171 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _VIC_male_Lag1Trend_residue_bestCycle_byMAPE None -0.011904761904761862 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_female' Length=59 Min=456 Max=1568 Mean=1076.7457627118645 StdDev=324.5805425217912 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__female' Min=0.0 Max=1.0 Mean=0.5582246067552737 StdDev=0.29188897708794176 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '__female_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '__female_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0683 MAPE_Forecast=0.0683 MAPE_Test=0.0683 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.067 SMAPE_Forecast=0.067 SMAPE_Test=0.067 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=87.62816077481841 CRPS_Forecast=87.62816077481841 CRPS_Test=87.62816077481841 -INFO:pyaf.std:MODEL_L1 L1_Fit=67.86440677966101 L1_Forecast=67.86440677966101 L1_Test=67.86440677966101 -INFO:pyaf.std:MODEL_L2 L2_Fit=82.58390699715808 L2_Forecast=82.58390699715808 L2_Test=82.58390699715808 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.4118598778492621 LnQ_Forecast=0.4118598778492621 LnQ_Test=0.4118598778492621 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=61.0 MedAE_Forecast=61.0 MedAE_Test=61.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6906474820143885 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __female_Lag1Trend_residue_bestCycle_byMAPE None -0.014388489208633115 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_male' Length=59 Min=602 Max=2045 Mean=1442.1016949152543 StdDev=422.14716266520117 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__male' Min=0.0 Max=1.0 Mean=0.582191056767328 StdDev=0.2925482762752607 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '__male_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '__male_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0588 MAPE_Forecast=0.0588 MAPE_Test=0.0588 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0576 SMAPE_Forecast=0.0576 SMAPE_Test=0.0576 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=112.16002518159807 CRPS_Forecast=112.16002518159807 CRPS_Test=112.16002518159807 -INFO:pyaf.std:MODEL_L1 L1_Fit=77.49152542372882 L1_Forecast=77.49152542372882 L1_Test=77.49152542372882 -INFO:pyaf.std:MODEL_L2 L2_Fit=97.29737746217495 L2_Forecast=97.29737746217495 L2_Test=97.29737746217495 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.31489607478234866 LnQ_Forecast=0.31489607478234866 LnQ_Test=0.31489607478234866 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=58.0 MedAE_Forecast=58.0 MedAE_Test=58.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.735966735966736 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __male_Lag1Trend_residue_bestCycle_byMAPE None -0.012474012474012475 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_' Length=59 Min=1058 Max=3613 Mean=2518.8474576271187 StdDev=745.1118858893182 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__' Min=0.0 Max=1.0 Mean=0.5717602573883046 StdDev=0.2916289181562889 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '___Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '___Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0581 MAPE_Forecast=0.0581 MAPE_Test=0.0581 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0571 SMAPE_Forecast=0.0571 SMAPE_Test=0.0571 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=198.95898305084748 CRPS_Forecast=198.95898305084748 CRPS_Test=198.95898305084748 -INFO:pyaf.std:MODEL_L1 L1_Fit=132.03389830508473 L1_Forecast=132.03389830508473 L1_Test=132.03389830508473 -INFO:pyaf.std:MODEL_L2 L2_Fit=168.23812824865286 L2_Forecast=168.23812824865286 L2_Test=168.23812824865286 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3137926222909844 LnQ_Forecast=0.3137926222909844 LnQ_Test=0.3137926222909844 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=112.0 MedAE_Forecast=112.0 MedAE_Test=112.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.7162426614481409 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES ___Lag1Trend_residue_bestCycle_byMAPE None -0.012133072407045087 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_FORECAST') -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.81, ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU', 'TD', 'MO', 'OC'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD AHP_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD PHA_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_MIDDLE_OUT_METHOD MO -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD OC -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.847, 'HIERARCHICAL_FORECAST') diff --git a/tests/references/bugs/issue_56/issue_56_order2.log b/tests/references/bugs/issue_56/issue_56_order2.log deleted file mode 100644 index 54ab649ab..000000000 --- a/tests/references/bugs/issue_56/issue_56_order2.log +++ /dev/null @@ -1,430 +0,0 @@ -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_TRAINING') -INFO:pyaf.timing:('OPERATION_START', ('SIGNAL_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', 'None', '_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', '_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': '_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'Diff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'RelDiff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'CumSum_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'Diff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': '_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'CumSum_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'RelDiff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.818, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'CumSum_NSW_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.86, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'Diff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': '_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.887, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'Diff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'Diff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'RelDiff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.956, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': '_NSW_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.974, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'CumSum_NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'CumSum_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.008, ('TRAINING', {'Signal': 'NSW_female', 'Transformation': 'RelDiff_NSW_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.018, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': '_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': '_VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.036, ('TRAINING', {'Signal': 'NSW_male', 'Transformation': 'RelDiff_NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'Diff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'RelDiff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'CumSum_VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.507, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'Diff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.559, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': '_VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': '__female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': 'Diff__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.526, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'CumSum_VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': 'RelDiff__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.654, ('TRAINING', {'Signal': 'VIC_female', 'Transformation': 'RelDiff_VIC_female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_female', 'Transformation': 'CumSum__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.615, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': '_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': '__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.595, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'Diff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.535, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'CumSum_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': 'Diff__male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': 'RelDiff__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.711, ('TRAINING', {'Signal': 'VIC_male', 'Transformation': 'RelDiff_VIC_male'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_male', 'Transformation': 'CumSum__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.46, ('TRAINING', {'Signal': '_female', 'Transformation': '__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.469, ('TRAINING', {'Signal': '_female', 'Transformation': 'Diff__female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': '__'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': 'Diff__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.542, ('TRAINING', {'Signal': '_female', 'Transformation': 'RelDiff__female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.456, ('TRAINING', {'Signal': '_female', 'Transformation': 'CumSum__female'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': 'RelDiff__'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': '_', 'Transformation': 'CumSum__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.455, ('TRAINING', {'Signal': '_male', 'Transformation': 'Diff__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.566, ('TRAINING', {'Signal': '_male', 'Transformation': '__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.441, ('TRAINING', {'Signal': '_male', 'Transformation': 'CumSum__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.556, ('TRAINING', {'Signal': '_male', 'Transformation': 'RelDiff__male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.43, ('TRAINING', {'Signal': '_', 'Transformation': '__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.484, ('TRAINING', {'Signal': '_', 'Transformation': 'Diff__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.383, ('TRAINING', {'Signal': '_', 'Transformation': 'CumSum__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.537, ('TRAINING', {'Signal': '_', 'Transformation': 'RelDiff__'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 2.748, ('SIGNAL_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', 'None', '_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', '_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('FINALIZE_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]), ('NSW_male', [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]), ('VIC_female', [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]), ('VIC_male', [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]), ('_female', [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]), ('_male', [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]), ('_', [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')])], 'Cores': 7})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW_female', 'Transformations': [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.01, ('MODEL_SELECTION', {'Signal': 'NSW_female', 'Transformations': [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_female', 'Model': '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.028, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_female', 'Model': '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_female'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW_male', 'Transformations': [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.01, ('MODEL_SELECTION', {'Signal': 'NSW_male', 'Transformations': [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_male', 'Model': '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.03, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_male', 'Model': '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_male'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC_female', 'Transformations': [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': 'VIC_female', 'Transformations': [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_female', 'Model': '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC_male', 'Transformations': [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.044, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_female', 'Model': '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': 'VIC_male', 'Transformations': [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_male', 'Model': '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_female', 'Transformations': [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.042, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_male', 'Model': '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': '_female', 'Transformations': [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_female', 'Model': '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_male', 'Transformations': [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': '_male', 'Transformations': [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_male', 'Model': '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.042, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_female', 'Model': '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_female'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': '_', 'Transformations': [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': '_', 'Transformations': [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_', 'Model': '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_male', 'Model': '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.033, ('UPDATE_BEST_MODEL_PERFS', {'Signal': '_', 'Model': '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.354, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.366, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.397, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.415, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.345, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.388, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_male'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.446, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': '_female'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.203, ('FINALIZE_TRAINING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Transformations': [('NSW_female', [('NSW_female', 'None', 'CumSum_', 'T+S+R'), ('NSW_female', 'None', 'Diff_', 'T+S+R'), ('NSW_female', 'None', 'RelDiff_', 'T+S+R'), ('NSW_female', 'None', '_', 'T+S+R')]), ('NSW_male', [('NSW_male', 'None', 'CumSum_', 'T+S+R'), ('NSW_male', 'None', 'Diff_', 'T+S+R'), ('NSW_male', 'None', 'RelDiff_', 'T+S+R'), ('NSW_male', 'None', '_', 'T+S+R')]), ('VIC_female', [('VIC_female', 'None', 'CumSum_', 'T+S+R'), ('VIC_female', 'None', 'Diff_', 'T+S+R'), ('VIC_female', 'None', 'RelDiff_', 'T+S+R'), ('VIC_female', 'None', '_', 'T+S+R')]), ('VIC_male', [('VIC_male', 'None', 'CumSum_', 'T+S+R'), ('VIC_male', 'None', 'Diff_', 'T+S+R'), ('VIC_male', 'None', 'RelDiff_', 'T+S+R'), ('VIC_male', 'None', '_', 'T+S+R')]), ('_female', [('_female', 'None', 'CumSum_', 'T+S+R'), ('_female', 'None', 'Diff_', 'T+S+R'), ('_female', 'None', 'RelDiff_', 'T+S+R'), ('_female', 'None', '_', 'T+S+R')]), ('_male', [('_male', 'None', 'CumSum_', 'T+S+R'), ('_male', 'None', 'Diff_', 'T+S+R'), ('_male', 'None', 'RelDiff_', 'T+S+R'), ('_male', 'None', '_', 'T+S+R')]), ('_', [('_', 'None', 'CumSum_', 'T+S+R'), ('_', 'None', 'Diff_', 'T+S+R'), ('_', 'None', 'RelDiff_', 'T+S+R'), ('_', 'None', '_', 'T+S+R')])], 'Cores': 7})) -INFO:pyaf.hierarchical:TRAINING_HIERARCHICAL_MODEL_COMPUTE_TOP_DOWN_HISTORICAL_PROPORTIONS -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'row_number_x', 'Index_Normalized_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.803, ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU', 'TD', 'MO', 'OC'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD AHP_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD PHA_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_MIDDLE_OUT_METHOD MO -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD OC -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD -INFO:pyaf.hierarchical:STRUCTURE [0, 1, 2] -INFO:pyaf.hierarchical:DATASET_COLUMNS Index(['Index', 'NSW_female', 'NSW_female_Forecast', - 'NSW_female_Forecast_Lower_Bound', 'NSW_female_Forecast_Upper_Bound', - 'NSW_male', 'NSW_male_Forecast', 'NSW_male_Forecast_Lower_Bound', - 'NSW_male_Forecast_Upper_Bound', 'VIC_female', 'VIC_female_Forecast', - 'VIC_female_Forecast_Lower_Bound', 'VIC_female_Forecast_Upper_Bound', - 'VIC_male', 'VIC_male_Forecast', 'VIC_male_Forecast_Lower_Bound', - 'VIC_male_Forecast_Upper_Bound', '_female', '_female_Forecast', - '_female_Forecast_Lower_Bound', '_female_Forecast_Upper_Bound', '_male', - '_male_Forecast', '_male_Forecast_Lower_Bound', - '_male_Forecast_Upper_Bound', '_', '__Forecast', - '__Forecast_Lower_Bound', '__Forecast_Upper_Bound', - 'NSW_female_BU_Forecast', 'NSW_male_BU_Forecast', - 'VIC_female_BU_Forecast', 'VIC_male_BU_Forecast', '_female_BU_Forecast', - '_male_BU_Forecast', '__BU_Forecast', '__AHP_TD_Forecast', - '_female_AHP_TD_Forecast', '_male_AHP_TD_Forecast', - 'NSW_female_AHP_TD_Forecast', 'VIC_female_AHP_TD_Forecast', - 'NSW_male_AHP_TD_Forecast', 'VIC_male_AHP_TD_Forecast', - '__PHA_TD_Forecast', '_female_PHA_TD_Forecast', '_male_PHA_TD_Forecast', - 'NSW_female_PHA_TD_Forecast', 'VIC_female_PHA_TD_Forecast', - 'NSW_male_PHA_TD_Forecast', 'VIC_male_PHA_TD_Forecast', - '_female_MO_Forecast', '_male_MO_Forecast', 'NSW_female_MO_Forecast', - 'VIC_female_MO_Forecast', 'NSW_male_MO_Forecast', - 'VIC_male_MO_Forecast', '__MO_Forecast', 'NSW_female_OC_Forecast', - 'NSW_male_OC_Forecast', 'VIC_female_OC_Forecast', - 'VIC_male_OC_Forecast', '_female_OC_Forecast', '_male_OC_Forecast', - '__OC_Forecast'], - dtype='object') -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (0, ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (1, ['_female', '_male']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (2, ['_']) -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0782, 'RMSE': 61.88312394961419, 'MAE': 47.338918335013005, 'SMAPE': 0.0765, 'ErrorMean': 3.1970833853642753, 'ErrorStdDev': 61.80048290742024, 'R2': 0.911769621603849, 'Pearson': 0.9574962766489252, 'MedAE': 39.15376408516778, 'LnQ': 0.5501273412625806} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0782, 'RMSE': 61.88312394961419, 'MAE': 47.338918335013005, 'SMAPE': 0.0765, 'ErrorMean': 3.1970833853642753, 'ErrorStdDev': 61.80048290742024, 'R2': 0.911769621603849, 'Pearson': 0.9574962766489252, 'MedAE': 39.15376408516778, 'LnQ': 0.5501273412625806} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629301, 'MAE': 43.25423728813559, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830509, 'ErrorStdDev': 56.54782418951946, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130372, 'MedAE': 35.0, 'LnQ': 0.449617560177566} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629301, 'MAE': 43.25423728813559, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830509, 'ErrorStdDev': 56.54782418951946, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130372, 'MedAE': 35.0, 'LnQ': 0.449617560177566} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0813, 'RMSE': 62.32278723251837, 'MAE': 48.70371692503398, 'SMAPE': 0.079, 'ErrorMean': 7.869221952578178, 'ErrorStdDev': 61.82398526697237, 'R2': 0.9105114608134931, 'Pearson': 0.9559136222127097, 'MedAE': 39.28809343911337, 'LnQ': 0.5820060772164425} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0813, 'RMSE': 62.32278723251837, 'MAE': 48.70371692503398, 'SMAPE': 0.079, 'ErrorMean': 7.869221952578178, 'ErrorStdDev': 61.82398526697237, 'R2': 0.9105114608134931, 'Pearson': 0.9559136222127097, 'MedAE': 39.28809343911337, 'LnQ': 0.5820060772164425} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629303, 'MAE': 43.254237288135656, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830838, 'ErrorStdDev': 56.547824189519446, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130373, 'MedAE': 35.00000000000023, 'LnQ': 0.449617560177567} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0694, 'RMSE': 57.10145594629303, 'MAE': 43.254237288135656, 'SMAPE': 0.0683, 'ErrorMean': 7.932203389830838, 'ErrorStdDev': 56.547824189519446, 'R2': 0.9248778434795353, 'Pearson': 0.9625062181130373, 'MedAE': 35.00000000000023, 'LnQ': 0.449617560177567} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0799, 'RMSE': 62.016771833343164, 'MAE': 47.68929397311254, 'SMAPE': 0.0775, 'ErrorMean': 8.015543376062395, 'ErrorStdDev': 61.49659383262953, 'R2': 0.9113881109148605, 'Pearson': 0.9574962766489251, 'MedAE': 38.894624929346264, 'LnQ': 0.5692992423976353} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0799, 'RMSE': 62.016771833343164, 'MAE': 47.68929397311254, 'SMAPE': 0.0775, 'ErrorMean': 8.015543376062395, 'ErrorStdDev': 61.49659383262953, 'R2': 0.9113881109148605, 'Pearson': 0.9574962766489251, 'MedAE': 38.894624929346264, 'LnQ': 0.5692992423976353} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 70.39300898637984, 'MAE': 55.09053975912032, 'SMAPE': 0.0667, 'ErrorMean': 7.6285482163500955, 'ErrorStdDev': 69.97843215068035, 'R2': 0.9319325977712878, 'Pearson': 0.9663700630732057, 'MedAE': 48.497307675375, 'LnQ': 0.43005490632626886} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 70.39300898637984, 'MAE': 55.09053975912032, 'SMAPE': 0.0667, 'ErrorMean': 7.6285482163500955, 'ErrorStdDev': 69.97843215068035, 'R2': 0.9319325977712878, 'Pearson': 0.9663700630732057, 'MedAE': 48.497307675375, 'LnQ': 0.43005490632626886} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268225, 'MAE': 54.45762711864407, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169491, 'ErrorStdDev': 70.30053268037926, 'R2': 0.9304286389667543, 'Pearson': 0.9654607890731268, 'MedAE': 43.0, 'LnQ': 0.42852837933766935} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268225, 'MAE': 54.45762711864407, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169491, 'ErrorStdDev': 70.30053268037926, 'R2': 0.9304286389667543, 'Pearson': 0.9654607890731268, 'MedAE': 43.0, 'LnQ': 0.42852837933766935} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0699, 'RMSE': 71.08956064805535, 'MAE': 56.25353847722968, 'SMAPE': 0.0679, 'ErrorMean': 11.006816792816519, 'ErrorStdDev': 70.23229753626826, 'R2': 0.9305788542591356, 'Pearson': 0.9663934541393859, 'MedAE': 47.975741620046165, 'LnQ': 0.44073343304086815} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0699, 'RMSE': 71.08956064805535, 'MAE': 56.25353847722968, 'SMAPE': 0.0679, 'ErrorMean': 11.006816792816519, 'ErrorStdDev': 70.23229753626826, 'R2': 0.9305788542591356, 'Pearson': 0.9663934541393859, 'MedAE': 47.975741620046165, 'LnQ': 0.44073343304086815} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268222, 'MAE': 54.457627118644034, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169328, 'ErrorStdDev': 70.30053268037925, 'R2': 0.9304286389667544, 'Pearson': 0.9654607890731268, 'MedAE': 42.99999999999977, 'LnQ': 0.4285283793376688} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0666, 'RMSE': 71.16643181268222, 'MAE': 54.457627118644034, 'SMAPE': 0.0653, 'ErrorMean': 11.067796610169328, 'ErrorStdDev': 70.30053268037925, 'R2': 0.9304286389667544, 'Pearson': 0.9654607890731268, 'MedAE': 42.99999999999977, 'LnQ': 0.4285283793376688} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0696, 'RMSE': 70.70421689408323, 'MAE': 55.925572084650426, 'SMAPE': 0.0677, 'ErrorMean': 10.858812414263125, 'ErrorStdDev': 69.86538828030237, 'R2': 0.931329414600923, 'Pearson': 0.9663700630732055, 'MedAE': 49.799935402255414, 'LnQ': 0.4385187714181826} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0696, 'RMSE': 70.70421689408323, 'MAE': 55.925572084650426, 'SMAPE': 0.0677, 'ErrorMean': 10.858812414263125, 'ErrorStdDev': 69.86538828030237, 'R2': 0.931329414600923, 'Pearson': 0.9663700630732055, 'MedAE': 49.799935402255414, 'LnQ': 0.4385187714181826} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.086, 'RMSE': 42.9202146915974, 'MAE': 34.20080687656886, 'SMAPE': 0.084, 'ErrorMean': 8.291636139123094, 'ErrorStdDev': 42.111680081768306, 'R2': 0.8769407428870463, 'Pearson': 0.9409954918068553, 'MedAE': 29.537947573261476, 'LnQ': 0.6662770902692463} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.086, 'RMSE': 42.9202146915974, 'MAE': 34.20080687656886, 'SMAPE': 0.084, 'ErrorMean': 8.291636139123094, 'ErrorStdDev': 42.111680081768306, 'R2': 0.8769407428870463, 'Pearson': 0.9409954918068553, 'MedAE': 29.537947573261476, 'LnQ': 0.6662770902692463} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.6959597006186, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711864, 'ErrorStdDev': 44.40578987123082, 'R2': 0.8665473963737461, 'Pearson': 0.9324933676163617, 'MedAE': 35.0, 'LnQ': 0.7451704328409279} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.6959597006186, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711864, 'ErrorStdDev': 44.40578987123082, 'R2': 0.8665473963737461, 'Pearson': 0.9324933676163617, 'MedAE': 35.0, 'LnQ': 0.7451704328409279} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0877, 'RMSE': 43.077644041671846, 'MAE': 34.847752172270496, 'SMAPE': 0.0865, 'ErrorMean': 5.147727199964073, 'ErrorStdDev': 42.76896445853858, 'R2': 0.8760363360058929, 'Pearson': 0.9400739653817466, 'MedAE': 30.579996222138334, 'LnQ': 0.6941044814146825} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0877, 'RMSE': 43.077644041671846, 'MAE': 34.847752172270496, 'SMAPE': 0.0865, 'ErrorMean': 5.147727199964073, 'ErrorStdDev': 42.76896445853858, 'R2': 0.8760363360058929, 'Pearson': 0.9400739653817466, 'MedAE': 30.579996222138334, 'LnQ': 0.6941044814146825} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.69595970061861, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711795, 'ErrorStdDev': 44.40578987123083, 'R2': 0.866547396373746, 'Pearson': 0.9324933676163618, 'MedAE': 35.000000000000114, 'LnQ': 0.7451704328409281} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0908, 'RMSE': 44.69595970061861, 'MAE': 35.932203389830505, 'SMAPE': 0.089, 'ErrorMean': 5.084745762711795, 'ErrorStdDev': 44.40578987123083, 'R2': 0.866547396373746, 'Pearson': 0.9324933676163618, 'MedAE': 35.000000000000114, 'LnQ': 0.7451704328409281} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0844, 'RMSE': 42.28932734562721, 'MAE': 33.615862395855515, 'SMAPE': 0.0829, 'ErrorMean': 5.243444765963134, 'ErrorStdDev': 41.963001493362064, 'R2': 0.8805318682434521, 'Pearson': 0.9409954918068553, 'MedAE': 26.509407046537348, 'LnQ': 0.6525889736279286} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0844, 'RMSE': 42.28932734562721, 'MAE': 33.615862395855515, 'SMAPE': 0.0829, 'ErrorMean': 5.243444765963134, 'ErrorStdDev': 41.963001493362064, 'R2': 0.8805318682434521, 'Pearson': 0.9409954918068553, 'MedAE': 26.509407046537348, 'LnQ': 0.6525889736279286} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0755, 'RMSE': 49.09404571362927, 'MAE': 39.51549185862075, 'SMAPE': 0.0741, 'ErrorMean': 11.899681411704913, 'ErrorStdDev': 47.630063057189474, 'R2': 0.9036564131984738, 'Pearson': 0.955962802325991, 'MedAE': 29.972638045383064, 'LnQ': 0.49730897492268006} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0755, 'RMSE': 49.09404571362927, 'MAE': 39.51549185862075, 'SMAPE': 0.0741, 'ErrorMean': 11.899681411704913, 'ErrorStdDev': 47.630063057189474, 'R2': 0.9036564131984738, 'Pearson': 0.955962802325991, 'MedAE': 29.972638045383064, 'LnQ': 0.49730897492268006} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.610169491525426, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830509, 'ErrorStdDev': 53.23719370374587, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982798} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.610169491525426, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830509, 'ErrorStdDev': 53.23719370374587, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982798} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0767, 'RMSE': 50.005918797978644, 'MAE': 40.2321040264098, 'SMAPE': 0.0754, 'ErrorMean': 6.993183207183485, 'ErrorStdDev': 49.51451608832305, 'R2': 0.900044202610638, 'Pearson': 0.9511536267019925, 'MedAE': 30.30858915894885, 'LnQ': 0.5113259908693725} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0767, 'RMSE': 50.005918797978644, 'MAE': 40.2321040264098, 'SMAPE': 0.0754, 'ErrorMean': 6.993183207183485, 'ErrorStdDev': 49.51451608832305, 'R2': 0.900044202610638, 'Pearson': 0.9511536267019925, 'MedAE': 30.30858915894885, 'LnQ': 0.5113259908693725} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.61016949152541, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830434, 'ErrorStdDev': 53.237193703745874, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982797} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0852, 'RMSE': 53.68662996769434, 'MAE': 43.61016949152541, 'SMAPE': 0.0834, 'ErrorMean': 6.932203389830434, 'ErrorStdDev': 53.237193703745874, 'R2': 0.8847880700331765, 'Pearson': 0.9420698072072746, 'MedAE': 40.0, 'LnQ': 0.6365821273982797} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.074, 'RMSE': 47.833484231171475, 'MAE': 38.97254732719988, 'SMAPE': 0.0732, 'ErrorMean': 6.899148596253585, 'ErrorStdDev': 47.3333282406862, 'R2': 0.9085404209403665, 'Pearson': 0.9559628023259911, 'MedAE': 31.343337011815947, 'LnQ': 0.48202280330220065} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.074, 'RMSE': 47.833484231171475, 'MAE': 38.97254732719988, 'SMAPE': 0.0732, 'ErrorMean': 6.899148596253585, 'ErrorStdDev': 47.3333282406862, 'R2': 0.9085404209403665, 'Pearson': 0.9559628023259911, 'MedAE': 31.343337011815947, 'LnQ': 0.48202280330220065} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__BU_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__BU_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__MO_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__MO_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__OC_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542367, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__OC_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542367, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '__PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '__PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0581, 'RMSE': 168.23812824865286, 'MAE': 132.03389830508473, 'SMAPE': 0.0571, 'ErrorMean': 31.016949152542374, 'ErrorStdDev': 165.35421573663845, 'R2': 0.9490192907244944, 'Pearson': 0.9750900202556231, 'MedAE': 112.0, 'LnQ': 0.3137926222909844} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.065, 'RMSE': 80.93013515525986, 'MAE': 64.25576318492837, 'SMAPE': 0.0638, 'ErrorMean': 11.48871952448701, 'ErrorStdDev': 80.11052427700305, 'R2': 0.9378307586510127, 'Pearson': 0.9692861115856176, 'MedAE': 52.187438167617074, 'LnQ': 0.3841374093261447} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.065, 'RMSE': 80.93013515525986, 'MAE': 64.25576318492837, 'SMAPE': 0.0638, 'ErrorMean': 11.48871952448701, 'ErrorStdDev': 80.11052427700305, 'R2': 0.9378307586510127, 'Pearson': 0.9692861115856176, 'MedAE': 52.187438167617074, 'LnQ': 0.3841374093261447} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_BU_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_MO_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715808, 'MAE': 67.86440677966101, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542374, 'ErrorStdDev': 81.55158324444339, 'R2': 0.9352639961603366, 'Pearson': 0.967922899960135, 'MedAE': 61.0, 'LnQ': 0.4118598778492621} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715814, 'MAE': 67.86440677966105, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542546, 'ErrorStdDev': 81.55158324444344, 'R2': 0.9352639961603366, 'Pearson': 0.9679228999601348, 'MedAE': 60.99999999999977, 'LnQ': 0.41185987784926237} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_OC_Forecast', 'Length': 59, 'MAPE': 0.0683, 'RMSE': 82.58390699715814, 'MAE': 67.86440677966105, 'SMAPE': 0.067, 'ErrorMean': 13.016949152542546, 'ErrorStdDev': 81.55158324444344, 'R2': 0.9352639961603366, 'Pearson': 0.9679228999601348, 'MedAE': 60.99999999999977, 'LnQ': 0.41185987784926237} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0655, 'RMSE': 81.16027794640222, 'MAE': 64.63762627011437, 'SMAPE': 0.0642, 'ErrorMean': 13.25898814202565, 'ErrorStdDev': 80.06990664280112, 'R2': 0.937476671847496, 'Pearson': 0.9692861115856175, 'MedAE': 54.258660135117, 'LnQ': 0.3876105970532517} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_female_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0655, 'RMSE': 81.16027794640222, 'MAE': 64.63762627011437, 'SMAPE': 0.0642, 'ErrorMean': 13.25898814202565, 'ErrorStdDev': 80.06990664280112, 'R2': 0.937476671847496, 'Pearson': 0.9692861115856175, 'MedAE': 54.258660135117, 'LnQ': 0.3876105970532517} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0578, 'RMSE': 94.32738181170552, 'MAE': 75.05891277075176, 'SMAPE': 0.0567, 'ErrorMean': 19.528229628054923, 'ErrorStdDev': 92.28381877146843, 'R2': 0.9500715813634494, 'Pearson': 0.9758202550657132, 'MedAE': 50.11718159567317, 'LnQ': 0.3050309972891128} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_AHP_TD_Forecast', 'Length': 59, 'MAPE': 0.0578, 'RMSE': 94.32738181170552, 'MAE': 75.05891277075176, 'SMAPE': 0.0567, 'ErrorMean': 19.528229628054923, 'ErrorStdDev': 92.28381877146843, 'R2': 0.9500715813634494, 'Pearson': 0.9758202550657132, 'MedAE': 50.11718159567317, 'LnQ': 0.3050309972891128} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_BU_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_MO_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217495, 'MAE': 77.49152542372882, 'SMAPE': 0.0576, 'ErrorMean': 18.0, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.974033332225313, 'MedAE': 58.0, 'LnQ': 0.31489607478234866} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217488, 'MAE': 77.49152542372875, 'SMAPE': 0.0576, 'ErrorMean': 17.999999999999623, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.9740333322253134, 'MedAE': 57.999999999999545, 'LnQ': 0.3148960747823484} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_OC_Forecast', 'Length': 59, 'MAPE': 0.0588, 'RMSE': 97.29737746217488, 'MAE': 77.49152542372875, 'SMAPE': 0.0576, 'ErrorMean': 17.999999999999623, 'ErrorStdDev': 95.61788358365264, 'R2': 0.9468779874911686, 'Pearson': 0.9740333322253134, 'MedAE': 57.999999999999545, 'LnQ': 0.3148960747823484} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': '_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0576, 'RMSE': 93.96986777755437, 'MAE': 74.89426726951811, 'SMAPE': 0.0565, 'ErrorMean': 17.75796101051672, 'ErrorStdDev': 92.27670817102232, 'R2': 0.9504493355809386, 'Pearson': 0.9758202550657132, 'MedAE': 51.06901192366706, 'LnQ': 0.30266170991814867} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': '_male_PHA_TD_Forecast', 'Length': 59, 'MAPE': 0.0576, 'RMSE': 93.96986777755437, 'MAE': 74.89426726951811, 'SMAPE': 0.0565, 'ErrorMean': 17.75796101051672, 'ErrorStdDev': 92.27670817102232, 'R2': 0.9504493355809386, 'Pearson': 0.9758202550657132, 'MedAE': 51.06901192366706, 'LnQ': 0.30266170991814867} -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 5.134, 'HIERARCHICAL_TRAINING') -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW_female' Length=59 Min=270 Max=1000 Mean=650.9322033898305 StdDev=208.33544206535956 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW_female' Min=0.0 Max=1.0 Mean=0.5218249361504528 StdDev=0.2853910165278899 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_female_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0694 MAPE_Forecast=0.0694 MAPE_Test=0.0694 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0683 SMAPE_Forecast=0.0683 SMAPE_Test=0.0683 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=57.710539467312344 CRPS_Forecast=57.710539467312344 CRPS_Test=57.710539467312344 -INFO:pyaf.std:MODEL_L1 L1_Fit=43.25423728813559 L1_Forecast=43.25423728813559 L1_Test=43.25423728813559 -INFO:pyaf.std:MODEL_L2 L2_Fit=57.10145594629301 L2_Forecast=57.10145594629301 L2_Test=57.10145594629301 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.449617560177566 LnQ_Forecast=0.449617560177566 LnQ_Test=0.449617560177566 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=35.0 MedAE_Forecast=35.0 MedAE_Test=35.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6410958904109589 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _NSW_female_Lag1Trend_residue_bestCycle_byMAPE None -0.012328767123287676 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW_male' Length=59 Min=349 Max=1264 Mean=881.8305084745763 StdDev=269.81118021227 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW_male' Min=0.0 Max=1.0 Mean=0.5823284245623784 StdDev=0.29487560678936614 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_male_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0666 MAPE_Forecast=0.0666 MAPE_Test=0.0666 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0653 SMAPE_Forecast=0.0653 SMAPE_Test=0.0653 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=72.73004358353509 CRPS_Forecast=72.73004358353509 CRPS_Test=72.73004358353509 -INFO:pyaf.std:MODEL_L1 L1_Fit=54.45762711864407 L1_Forecast=54.45762711864407 L1_Test=54.45762711864407 -INFO:pyaf.std:MODEL_L2 L2_Fit=71.16643181268225 L2_Forecast=71.16643181268225 L2_Test=71.16643181268225 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.42852837933766935 LnQ_Forecast=0.42852837933766935 LnQ_Test=0.42852837933766935 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=43.0 MedAE_Forecast=43.0 MedAE_Test=43.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.7136612021857923 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _NSW_male_Lag1Trend_residue_bestCycle_byMAPE None -0.007650273224043769 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC_female' Length=59 Min=174 Max=656 Mean=425.8135593220339 StdDev=122.35021622116213 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC_female' Min=0.0 Max=1.0 Mean=0.5224347703776638 StdDev=0.2538386228654816 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_female_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0908 MAPE_Forecast=0.0908 MAPE_Test=0.0908 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.089 SMAPE_Forecast=0.089 SMAPE_Test=0.089 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=33.12639612590799 CRPS_Forecast=33.12639612590799 CRPS_Test=33.12639612590799 -INFO:pyaf.std:MODEL_L1 L1_Fit=35.932203389830505 L1_Forecast=35.932203389830505 L1_Test=35.932203389830505 -INFO:pyaf.std:MODEL_L2 L2_Fit=44.6959597006186 L2_Forecast=44.6959597006186 L2_Test=44.6959597006186 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.7451704328409279 LnQ_Forecast=0.7451704328409279 LnQ_Test=0.7451704328409279 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=35.0 MedAE_Forecast=35.0 MedAE_Test=35.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6473029045643154 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _VIC_female_Lag1Trend_residue_bestCycle_byMAPE None -0.008298755186722018 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC_male' Length=59 Min=253 Max=841 Mean=560.271186440678 StdDev=158.16756085042223 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC_male' Min=0.0 Max=1.0 Mean=0.5225700449671394 StdDev=0.26899245042588815 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_male_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0852 MAPE_Forecast=0.0852 MAPE_Test=0.0852 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0834 SMAPE_Forecast=0.0834 SMAPE_Test=0.0834 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=42.76509249394673 CRPS_Forecast=42.76509249394673 CRPS_Test=42.76509249394673 -INFO:pyaf.std:MODEL_L1 L1_Fit=43.610169491525426 L1_Forecast=43.610169491525426 L1_Test=43.610169491525426 -INFO:pyaf.std:MODEL_L2 L2_Fit=53.68662996769434 L2_Forecast=53.68662996769434 L2_Test=53.68662996769434 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.6365821273982798 LnQ_Forecast=0.6365821273982798 LnQ_Test=0.6365821273982798 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=40.0 MedAE_Forecast=40.0 MedAE_Test=40.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6955782312925171 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES _VIC_male_Lag1Trend_residue_bestCycle_byMAPE None -0.011904761904761862 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_female' Length=59 Min=456 Max=1568 Mean=1076.7457627118645 StdDev=324.5805425217912 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__female' Min=0.0 Max=1.0 Mean=0.5582246067552737 StdDev=0.29188897708794176 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '__female_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '__female_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__female_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0683 MAPE_Forecast=0.0683 MAPE_Test=0.0683 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.067 SMAPE_Forecast=0.067 SMAPE_Test=0.067 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=87.62816077481841 CRPS_Forecast=87.62816077481841 CRPS_Test=87.62816077481841 -INFO:pyaf.std:MODEL_L1 L1_Fit=67.86440677966101 L1_Forecast=67.86440677966101 L1_Test=67.86440677966101 -INFO:pyaf.std:MODEL_L2 L2_Fit=82.58390699715808 L2_Forecast=82.58390699715808 L2_Test=82.58390699715808 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.4118598778492621 LnQ_Forecast=0.4118598778492621 LnQ_Test=0.4118598778492621 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=61.0 MedAE_Forecast=61.0 MedAE_Test=61.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.6906474820143885 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __female_Lag1Trend_residue_bestCycle_byMAPE None -0.014388489208633115 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_male' Length=59 Min=602 Max=2045 Mean=1442.1016949152543 StdDev=422.14716266520117 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__male' Min=0.0 Max=1.0 Mean=0.582191056767328 StdDev=0.2925482762752607 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '__male_Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '__male_Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '__male_Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0588 MAPE_Forecast=0.0588 MAPE_Test=0.0588 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0576 SMAPE_Forecast=0.0576 SMAPE_Test=0.0576 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=112.16002518159807 CRPS_Forecast=112.16002518159807 CRPS_Test=112.16002518159807 -INFO:pyaf.std:MODEL_L1 L1_Fit=77.49152542372882 L1_Forecast=77.49152542372882 L1_Test=77.49152542372882 -INFO:pyaf.std:MODEL_L2 L2_Fit=97.29737746217495 L2_Forecast=97.29737746217495 L2_Test=97.29737746217495 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.31489607478234866 LnQ_Forecast=0.31489607478234866 LnQ_Test=0.31489607478234866 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=58.0 MedAE_Forecast=58.0 MedAE_Test=58.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.735966735966736 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES __male_Lag1Trend_residue_bestCycle_byMAPE None -0.012474012474012475 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Index' TimeMin=1933 TimeMax=1991 TimeDelta=1 Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='_' Length=59 Min=1058 Max=3613 Mean=2518.8474576271187 StdDev=745.1118858893182 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='__' Min=0.0 Max=1.0 Mean=0.5717602573883046 StdDev=0.2916289181562889 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [Lag1Trend + Cycle_None + NoAR] -INFO:pyaf.std:TREND_DETAIL '___Lag1Trend' [Lag1Trend] -INFO:pyaf.std:CYCLE_DETAIL '___Lag1Trend_residue_bestCycle_byMAPE' [Cycle_None] -INFO:pyaf.std:AUTOREG_DETAIL '___Lag1Trend_residue_bestCycle_byMAPE_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0581 MAPE_Forecast=0.0581 MAPE_Test=0.0581 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0571 SMAPE_Forecast=0.0571 SMAPE_Test=0.0571 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.9831 MASE_Forecast=0.9831 MASE_Test=0.9831 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=198.95898305084748 CRPS_Forecast=198.95898305084748 CRPS_Test=198.95898305084748 -INFO:pyaf.std:MODEL_L1 L1_Fit=132.03389830508473 L1_Forecast=132.03389830508473 L1_Test=132.03389830508473 -INFO:pyaf.std:MODEL_L2 L2_Fit=168.23812824865286 L2_Forecast=168.23812824865286 L2_Test=168.23812824865286 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3137926222909844 LnQ_Forecast=0.3137926222909844 LnQ_Test=0.3137926222909844 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=112.0 MedAE_Forecast=112.0 MedAE_Test=112.0 -INFO:pyaf.std:MODEL_COMPLEXITY 2.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LAG1_TREND Lag1Trend 0.7162426614481409 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:BEST_CYCLE_LENGTH_VALUES ___Lag1Trend_residue_bestCycle_byMAPE None -0.012133072407045087 {} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_FORECAST') -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.705, ('FORECASTING', {'Signals': ['NSW_female', 'NSW_male', 'VIC_female', 'VIC_male', '_female', '_male', '_'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU', 'TD', 'MO', 'OC'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD AHP_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD PHA_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_MIDDLE_OUT_METHOD MO -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD OC -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.74, 'HIERARCHICAL_FORECAST') diff --git a/tests/references/plots/test_hierarchy_AU_all_reconciliations_plots.log b/tests/references/plots/test_hierarchy_AU_all_reconciliations_plots.log deleted file mode 100644 index 2ff17d295..000000000 --- a/tests/references/plots/test_hierarchy_AU_all_reconciliations_plots.log +++ /dev/null @@ -1,827 +0,0 @@ -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_TRAINING') -INFO:pyaf.timing:('OPERATION_START', ('SIGNAL_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', 'None', '_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) - City State Country -0 Sydney NSW_State Australia -1 NSW NSW_State Australia -2 Melbourne VIC_State Australia -3 VIC VIC_State Australia -4 BrisbaneGC QLD_State Australia -5 QLD QLD_State Australia -6 Capitals Other_State Australia -7 Other Other_State Australia -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': '_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'RelDiff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'Diff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'CumSum_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'Diff_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': '_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'CumSum_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'RelDiff_Capitals'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.207, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': '_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.212, ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'Diff_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': '_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.304, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'Diff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'Diff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'RelDiff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.378, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'CumSum_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'CumSum_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.437, ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'CumSum_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': '_NSW'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.47, ('TRAINING', {'Signal': 'Capitals', 'Transformation': '_Capitals'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.506, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'RelDiff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.526, ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'RelDiff_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': 'Diff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': 'RelDiff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': 'CumSum_NSW'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.688, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': '_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': '_Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.7, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'Diff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': 'Diff_Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.705, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'CumSum_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': 'RelDiff_Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.669, ('TRAINING', {'Signal': 'NSW', 'Transformation': '_NSW'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.796, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'RelDiff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': 'CumSum_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': '_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.715, ('TRAINING', {'Signal': 'NSW', 'Transformation': 'Diff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': 'Diff_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.704, ('TRAINING', {'Signal': 'NSW', 'Transformation': 'CumSum_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': 'RelDiff_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.851, ('TRAINING', {'Signal': 'NSW', 'Transformation': 'RelDiff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': 'CumSum_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.683, ('TRAINING', {'Signal': 'Other', 'Transformation': '_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': '_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.712, ('TRAINING', {'Signal': 'Other', 'Transformation': 'Diff_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'Diff_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.644, ('TRAINING', {'Signal': 'QLD', 'Transformation': '_QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'RelDiff_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.691, ('TRAINING', {'Signal': 'Other', 'Transformation': 'CumSum_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'CumSum_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.822, ('TRAINING', {'Signal': 'Other', 'Transformation': 'RelDiff_Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.68, ('TRAINING', {'Signal': 'QLD', 'Transformation': 'Diff_QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': '_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': 'Diff_VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.6, ('TRAINING', {'Signal': 'QLD', 'Transformation': 'CumSum_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.712, ('TRAINING', {'Signal': 'QLD', 'Transformation': 'RelDiff_QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': 'RelDiff_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': 'CumSum_VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.642, ('TRAINING', {'Signal': 'Sydney', 'Transformation': '_Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': '_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.696, ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'Diff_Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'Diff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.683, ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'CumSum_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.599, ('TRAINING', {'Signal': 'VIC', 'Transformation': 'Diff_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'RelDiff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'CumSum_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.688, ('TRAINING', {'Signal': 'VIC', 'Transformation': '_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': '_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.856, ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'RelDiff_Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'Diff_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.698, ('TRAINING', {'Signal': 'VIC', 'Transformation': 'CumSum_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'RelDiff_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.807, ('TRAINING', {'Signal': 'VIC', 'Transformation': 'RelDiff_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'CumSum_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.735, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': '_NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': '_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.917, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'Diff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.734, ('TRAINING', {'Signal': 'Other_State', 'Transformation': '_Other_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'Diff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'RelDiff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.906, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'CumSum_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.987, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'RelDiff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'CumSum_QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': '_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.981, ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'Diff_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.902, ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'RelDiff_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.735, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': '_QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'Diff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.93, ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'CumSum_Other_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'RelDiff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'CumSum_VIC_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': '_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.74, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'Diff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': 'Diff_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.843, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'CumSum_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.825, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': '_VIC_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': 'RelDiff_Australia'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': 'CumSum_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.791, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'Diff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.194, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'RelDiff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.769, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'CumSum_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.772, ('TRAINING', {'Signal': 'Australia', 'Transformation': '_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.748, ('TRAINING', {'Signal': 'Australia', 'Transformation': 'Diff_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.079, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'RelDiff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.716, ('TRAINING', {'Signal': 'Australia', 'Transformation': 'RelDiff_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.708, ('TRAINING', {'Signal': 'Australia', 'Transformation': 'CumSum_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 6.43, ('SIGNAL_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', 'None', '_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('FINALIZE_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]), ('Capitals', [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]), ('Melbourne', [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]), ('NSW', [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]), ('Other', [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]), ('QLD', [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]), ('Sydney', [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]), ('VIC', [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]), ('NSW_State', [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]), ('Other_State', [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]), ('QLD_State', [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]), ('VIC_State', [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]), ('Australia', [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')])], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BrisbaneGC', 'Transformations': [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.017, ('MODEL_SELECTION', {'Signal': 'BrisbaneGC', 'Transformations': [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BrisbaneGC', 'Model': '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.053, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BrisbaneGC', 'Model': '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Capitals', 'Transformations': [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.017, ('MODEL_SELECTION', {'Signal': 'Capitals', 'Transformations': [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Capitals', 'Model': '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.054, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Capitals', 'Model': '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Melbourne', 'Transformations': [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': 'Melbourne', 'Transformations': [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Melbourne', 'Model': '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.047, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Melbourne', 'Model': '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW', 'Transformations': [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': 'NSW', 'Transformations': [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW', 'Model': '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.053, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW', 'Model': '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Other', 'Transformations': [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': 'Other', 'Transformations': [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other', 'Model': '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.05, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other', 'Model': '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'QLD', 'Transformations': [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.552, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.013, ('MODEL_SELECTION', {'Signal': 'QLD', 'Transformations': [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD', 'Model': '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.041, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD', 'Model': '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.49, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Sydney', 'Transformations': [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.498, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.016, ('MODEL_SELECTION', {'Signal': 'Sydney', 'Transformations': [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Sydney', 'Model': '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.054, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Sydney', 'Model': '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.421, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.513, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.475, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC', 'Transformations': [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': 'VIC', 'Transformations': [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC', 'Model': '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.048, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC', 'Model': '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.495, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW_State', 'Transformations': [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'NSW_State', 'Transformations': [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_State', 'Model': '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.044, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_State', 'Model': '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.39, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Other_State', 'Transformations': [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'Other_State', 'Transformations': [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other_State', 'Model': '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.045, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other_State', 'Model': '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.472, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'QLD_State', 'Transformations': [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'QLD_State', 'Transformations': [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD_State', 'Model': '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.041, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD_State', 'Model': '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC_State', 'Transformations': [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'VIC_State', 'Transformations': [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_State', 'Model': '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.041, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_State', 'Model': '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.483, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.403, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Australia', 'Transformations': [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.432, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'Australia', 'Transformations': [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Australia', 'Model': '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.041, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Australia', 'Model': '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.465, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 4.023, ('FINALIZE_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]), ('Capitals', [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]), ('Melbourne', [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]), ('NSW', [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]), ('Other', [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]), ('QLD', [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]), ('Sydney', [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]), ('VIC', [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]), ('NSW_State', [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]), ('Other_State', [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]), ('QLD_State', [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]), ('VIC_State', [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]), ('Australia', [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')])], 'Cores': 8})) -INFO:pyaf.hierarchical:TRAINING_HIERARCHICAL_MODEL_COMPUTE_TOP_DOWN_HISTORICAL_PROPORTIONS -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Date_Normalized_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 2.361, ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU', 'TD', 'MO', 'OC'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD AHP_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD PHA_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_MIDDLE_OUT_METHOD MO -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD OC -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD -INFO:pyaf.hierarchical:STRUCTURE [0, 1, 2] -INFO:pyaf.hierarchical:DATASET_COLUMNS Index(['Date', 'BrisbaneGC', 'BrisbaneGC_Forecast', - 'BrisbaneGC_Forecast_Lower_Bound', 'BrisbaneGC_Forecast_Upper_Bound', - 'Capitals', 'Capitals_Forecast', 'Capitals_Forecast_Lower_Bound', - 'Capitals_Forecast_Upper_Bound', 'Melbourne', - ... - 'NSW_OC_Forecast', 'Other_OC_Forecast', 'QLD_OC_Forecast', - 'Sydney_OC_Forecast', 'VIC_OC_Forecast', 'NSW_State_OC_Forecast', - 'Other_State_OC_Forecast', 'QLD_State_OC_Forecast', - 'VIC_State_OC_Forecast', 'Australia_OC_Forecast'], - dtype='object', length=118) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (0, ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (1, ['NSW_State', 'Other_State', 'QLD_State', 'VIC_State']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (2, ['Australia']) -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Australia_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0314, 'RMSE': 2988.2555377830236, 'MAE': 2171.068181818182, 'SMAPE': 0.0308, 'ErrorMean': 740.0227272727273, 'ErrorStdDev': 2895.1748690209965, 'R2': 0.8566175137768354, 'Pearson': 0.9303137342980036, 'MedAE': 1400.0, 'LnQ': 0.08333920740925044} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Australia_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0314, 'RMSE': 2988.2555377830236, 'MAE': 2171.068181818182, 'SMAPE': 0.0308, 'ErrorMean': 740.0227272727273, 'ErrorStdDev': 2895.1748690209965, 'R2': 0.8566175137768354, 'Pearson': 0.9303137342980036, 'MedAE': 1400.0, 'LnQ': 0.08333920740925044} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Australia_BU_Forecast', 'Length': 44, 'MAPE': 0.0307, 'RMSE': 2649.2533389732457, 'MAE': 2160.6711851064942, 'SMAPE': 0.0305, 'ErrorMean': 39.73315164422043, 'ErrorStdDev': 2648.955365936034, 'R2': 0.8873042283973063, 'Pearson': 0.9420309611478157, 'MedAE': 1775.441518085714, 'LnQ': 0.06338420663612786} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Australia_BU_Forecast', 'Length': 44, 'MAPE': 0.0307, 'RMSE': 2649.2533389732457, 'MAE': 2160.6711851064942, 'SMAPE': 0.0305, 'ErrorMean': 39.73315164422043, 'ErrorStdDev': 2648.955365936034, 'R2': 0.8873042283973063, 'Pearson': 0.9420309611478157, 'MedAE': 1775.441518085714, 'LnQ': 0.06338420663612786} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Australia_MO_Forecast', 'Length': 44, 'MAPE': 0.0304, 'RMSE': 2681.5655374823828, 'MAE': 2131.612691344389, 'SMAPE': 0.0301, 'ErrorMean': 228.73315164422044, 'ErrorStdDev': 2671.7924464958132, 'R2': 0.8845384264642633, 'Pearson': 0.9414055707483305, 'MedAE': 1627.9467689721605, 'LnQ': 0.06525519951991025} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Australia_MO_Forecast', 'Length': 44, 'MAPE': 0.0304, 'RMSE': 2681.5655374823828, 'MAE': 2131.612691344389, 'SMAPE': 0.0301, 'ErrorMean': 228.73315164422044, 'ErrorStdDev': 2671.7924464958132, 'R2': 0.8845384264642633, 'Pearson': 0.9414055707483305, 'MedAE': 1627.9467689721605, 'LnQ': 0.06525519951991025} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Australia_OC_Forecast', 'Length': 44, 'MAPE': 0.031, 'RMSE': 2862.612874136088, 'MAE': 2153.103225796774, 'SMAPE': 0.0305, 'ErrorMean': 578.6910966231248, 'ErrorStdDev': 2803.5101358580464, 'R2': 0.8684212122377222, 'Pearson': 0.9349191863682206, 'MedAE': 1427.8405269005962, 'LnQ': 0.07625860685992128} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Australia_OC_Forecast', 'Length': 44, 'MAPE': 0.031, 'RMSE': 2862.612874136088, 'MAE': 2153.103225796774, 'SMAPE': 0.0305, 'ErrorMean': 578.6910966231248, 'ErrorStdDev': 2803.5101358580464, 'R2': 0.8684212122377222, 'Pearson': 0.9349191863682206, 'MedAE': 1427.8405269005962, 'LnQ': 0.07625860685992128} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Australia_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0314, 'RMSE': 2988.2555377830236, 'MAE': 2171.068181818182, 'SMAPE': 0.0308, 'ErrorMean': 740.0227272727273, 'ErrorStdDev': 2895.1748690209965, 'R2': 0.8566175137768354, 'Pearson': 0.9303137342980036, 'MedAE': 1400.0, 'LnQ': 0.08333920740925044} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Australia_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0314, 'RMSE': 2988.2555377830236, 'MAE': 2171.068181818182, 'SMAPE': 0.0308, 'ErrorMean': 740.0227272727273, 'ErrorStdDev': 2895.1748690209965, 'R2': 0.8566175137768354, 'Pearson': 0.9303137342980036, 'MedAE': 1400.0, 'LnQ': 0.08333920740925044} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BrisbaneGC_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0809, 'RMSE': 724.7303370979125, 'MAE': 616.4243205312531, 'SMAPE': 0.0784, 'ErrorMean': 169.3104648748454, 'ErrorStdDev': 704.6758318503039, 'R2': 0.4219234192860195, 'Pearson': 0.6908359461872079, 'MedAE': 524.3593018382071, 'LnQ': 0.3909266580034074} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BrisbaneGC_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0809, 'RMSE': 724.7303370979125, 'MAE': 616.4243205312531, 'SMAPE': 0.0784, 'ErrorMean': 169.3104648748454, 'ErrorStdDev': 704.6758318503039, 'R2': 0.4219234192860195, 'Pearson': 0.6908359461872079, 'MedAE': 524.3593018382071, 'LnQ': 0.3909266580034074} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BrisbaneGC_BU_Forecast', 'Length': 44, 'MAPE': 0.059, 'RMSE': 614.1944650589835, 'MAE': 440.84090909090907, 'SMAPE': 0.0568, 'ErrorMean': 129.52272727272728, 'ErrorStdDev': 600.3821316702602, 'R2': 0.5848124808738524, 'Pearson': 0.7767112806615456, 'MedAE': 353.0, 'LnQ': 0.2888940646786469} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BrisbaneGC_BU_Forecast', 'Length': 44, 'MAPE': 0.059, 'RMSE': 614.1944650589835, 'MAE': 440.84090909090907, 'SMAPE': 0.0568, 'ErrorMean': 129.52272727272728, 'ErrorStdDev': 600.3821316702602, 'R2': 0.5848124808738524, 'Pearson': 0.7767112806615456, 'MedAE': 353.0, 'LnQ': 0.2888940646786469} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BrisbaneGC_MO_Forecast', 'Length': 44, 'MAPE': 0.0949, 'RMSE': 891.436491265439, 'MAE': 753.2690381856381, 'SMAPE': 0.0931, 'ErrorMean': 32.514564742801234, 'ErrorStdDev': 890.8433201406538, 'R2': 0.12539227441774858, 'Pearson': 0.5041140331831235, 'MedAE': 752.5, 'LnQ': 0.5318818118495026} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BrisbaneGC_MO_Forecast', 'Length': 44, 'MAPE': 0.0949, 'RMSE': 891.436491265439, 'MAE': 753.2690381856381, 'SMAPE': 0.0931, 'ErrorMean': 32.514564742801234, 'ErrorStdDev': 890.8433201406538, 'R2': 0.12539227441774858, 'Pearson': 0.5041140331831235, 'MedAE': 752.5, 'LnQ': 0.5318818118495026} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BrisbaneGC_OC_Forecast', 'Length': 44, 'MAPE': 0.0626, 'RMSE': 629.3346461015518, 'MAE': 468.3706004360279, 'SMAPE': 0.0602, 'ErrorMean': 177.96660415590878, 'ErrorStdDev': 603.6472352201902, 'R2': 0.5640910606579421, 'Pearson': 0.7740043728403109, 'MedAE': 342.45096137119845, 'LnQ': 0.30099699124962814} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BrisbaneGC_OC_Forecast', 'Length': 44, 'MAPE': 0.0626, 'RMSE': 629.3346461015518, 'MAE': 468.3706004360279, 'SMAPE': 0.0602, 'ErrorMean': 177.96660415590878, 'ErrorStdDev': 603.6472352201902, 'R2': 0.5640910606579421, 'Pearson': 0.7740043728403109, 'MedAE': 342.45096137119845, 'LnQ': 0.30099699124962814} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BrisbaneGC_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0782, 'RMSE': 707.5583460073358, 'MAE': 599.3252224154016, 'SMAPE': 0.0766, 'ErrorMean': 81.05206329976524, 'ErrorStdDev': 702.9006871809755, 'R2': 0.44899313581762723, 'Pearson': 0.6908359461872081, 'MedAE': 587.7605209432072, 'LnQ': 0.3732075974446287} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BrisbaneGC_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0782, 'RMSE': 707.5583460073358, 'MAE': 599.3252224154016, 'SMAPE': 0.0766, 'ErrorMean': 81.05206329976524, 'ErrorStdDev': 702.9006871809755, 'R2': 0.44899313581762723, 'Pearson': 0.6908359461872081, 'MedAE': 587.7605209432072, 'LnQ': 0.3732075974446287} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Capitals_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0652, 'RMSE': 630.2134648393811, 'MAE': 509.88196710023493, 'SMAPE': 0.0641, 'ErrorMean': 117.49743279598074, 'ErrorStdDev': 619.1634392882155, 'R2': 0.49836538539353725, 'Pearson': 0.7343026400806666, 'MedAE': 369.0, 'LnQ': 0.26928817028082236} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Capitals_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0652, 'RMSE': 630.2134648393811, 'MAE': 509.88196710023493, 'SMAPE': 0.0641, 'ErrorMean': 117.49743279598074, 'ErrorStdDev': 619.1634392882155, 'R2': 0.49836538539353725, 'Pearson': 0.7343026400806666, 'MedAE': 369.0, 'LnQ': 0.26928817028082236} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Capitals_BU_Forecast', 'Length': 44, 'MAPE': 0.0577, 'RMSE': 608.1757558469427, 'MAE': 460.8863636363636, 'SMAPE': 0.0582, 'ErrorMean': -66.79545454545455, 'ErrorStdDev': 604.4965816711176, 'R2': 0.5328349460551864, 'Pearson': 0.7348640156077884, 'MedAE': 322.5, 'LnQ': 0.24876891335532347} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Capitals_BU_Forecast', 'Length': 44, 'MAPE': 0.0577, 'RMSE': 608.1757558469427, 'MAE': 460.8863636363636, 'SMAPE': 0.0582, 'ErrorMean': -66.79545454545455, 'ErrorStdDev': 604.4965816711176, 'R2': 0.5328349460551864, 'Pearson': 0.7348640156077884, 'MedAE': 322.5, 'LnQ': 0.24876891335532347} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Capitals_MO_Forecast', 'Length': 44, 'MAPE': 0.0758, 'RMSE': 780.4120013840982, 'MAE': 602.2219691802347, 'SMAPE': 0.0756, 'ErrorMean': 25.907527296191077, 'ErrorStdDev': 779.9818535925891, 'R2': 0.2307632577217924, 'Pearson': 0.48134864010570305, 'MedAE': 545.5989307770315, 'LnQ': 0.40660155207897625} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Capitals_MO_Forecast', 'Length': 44, 'MAPE': 0.0758, 'RMSE': 780.4120013840982, 'MAE': 602.2219691802347, 'SMAPE': 0.0756, 'ErrorMean': 25.907527296191077, 'ErrorStdDev': 779.9818535925891, 'R2': 0.2307632577217924, 'Pearson': 0.48134864010570305, 'MedAE': 545.5989307770315, 'LnQ': 0.40660155207897625} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Capitals_OC_Forecast', 'Length': 44, 'MAPE': 0.0609, 'RMSE': 597.7976206243468, 'MAE': 480.9278102405935, 'SMAPE': 0.0607, 'ErrorMean': 9.64842233773962, 'ErrorStdDev': 597.7197530369255, 'R2': 0.5486426642946024, 'Pearson': 0.7418405371605904, 'MedAE': 376.9872564312409, 'LnQ': 0.24021399939382324} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Capitals_OC_Forecast', 'Length': 44, 'MAPE': 0.0609, 'RMSE': 597.7976206243468, 'MAE': 480.9278102405935, 'SMAPE': 0.0607, 'ErrorMean': 9.64842233773962, 'ErrorStdDev': 597.7197530369255, 'R2': 0.5486426642946024, 'Pearson': 0.7418405371605904, 'MedAE': 376.9872564312409, 'LnQ': 0.24021399939382324} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Capitals_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.064, 'RMSE': 623.499887304344, 'MAE': 502.4809159096613, 'SMAPE': 0.0632, 'ErrorMean': 79.93581612841781, 'ErrorStdDev': 618.3545704273669, 'R2': 0.5089961475351632, 'Pearson': 0.7343026400806667, 'MedAE': 376.1647385932856, 'LnQ': 0.26346806475428053} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Capitals_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.064, 'RMSE': 623.499887304344, 'MAE': 502.4809159096613, 'SMAPE': 0.0632, 'ErrorMean': 79.93581612841781, 'ErrorStdDev': 618.3545704273669, 'R2': 0.5089961475351632, 'Pearson': 0.7343026400806667, 'MedAE': 376.1647385932856, 'LnQ': 0.26346806475428053} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Melbourne_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0867, 'RMSE': 485.04237838742426, 'MAE': 398.3002647011444, 'SMAPE': 0.0843, 'ErrorMean': 136.38618264009122, 'ErrorStdDev': 465.4727897703506, 'R2': 0.2536839940465482, 'Pearson': 0.6117925144508879, 'MedAE': 397.18985273799353, 'LnQ': 0.4610406654207226} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Melbourne_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0867, 'RMSE': 485.04237838742426, 'MAE': 398.3002647011444, 'SMAPE': 0.0843, 'ErrorMean': 136.38618264009122, 'ErrorStdDev': 465.4727897703506, 'R2': 0.2536839940465482, 'Pearson': 0.6117925144508879, 'MedAE': 397.18985273799353, 'LnQ': 0.4610406654207226} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Melbourne_BU_Forecast', 'Length': 44, 'MAPE': 0.0737, 'RMSE': 434.35490306681453, 'MAE': 348.45454545454544, 'SMAPE': 0.0743, 'ErrorMean': -59.22727272727273, 'ErrorStdDev': 430.29793397536906, 'R2': 0.4015155887084072, 'Pearson': 0.6562149335446998, 'MedAE': 327.0, 'LnQ': 0.3758072346191974} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Melbourne_BU_Forecast', 'Length': 44, 'MAPE': 0.0737, 'RMSE': 434.35490306681453, 'MAE': 348.45454545454544, 'SMAPE': 0.0743, 'ErrorMean': -59.22727272727273, 'ErrorStdDev': 430.29793397536906, 'R2': 0.4015155887084072, 'Pearson': 0.6562149335446998, 'MedAE': 327.0, 'LnQ': 0.3758072346191974} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Melbourne_MO_Forecast', 'Length': 44, 'MAPE': 0.1374, 'RMSE': 823.8988772084131, 'MAE': 677.0659433686917, 'SMAPE': 0.1355, 'ErrorMean': 32.54252934917533, 'ErrorStdDev': 823.255940548771, 'R2': -1.1533330609077264, 'Pearson': 0.618762409721196, 'MedAE': 620.6863680089809, 'LnQ': 1.122739885900289} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Melbourne_MO_Forecast', 'Length': 44, 'MAPE': 0.1374, 'RMSE': 823.8988772084131, 'MAE': 677.0659433686917, 'SMAPE': 0.1355, 'ErrorMean': 32.54252934917533, 'ErrorStdDev': 823.255940548771, 'R2': -1.1533330609077264, 'Pearson': 0.618762409721196, 'MedAE': 620.6863680089809, 'LnQ': 1.122739885900289} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Melbourne_OC_Forecast', 'Length': 44, 'MAPE': 0.077, 'RMSE': 427.9286803374235, 'MAE': 358.0537563538895, 'SMAPE': 0.076, 'ErrorMean': 40.21660415591859, 'ErrorStdDev': 426.034717136403, 'R2': 0.4190935813387283, 'Pearson': 0.66853292177471, 'MedAE': 279.74015894845706, 'LnQ': 0.3630531739029509} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Melbourne_OC_Forecast', 'Length': 44, 'MAPE': 0.077, 'RMSE': 427.9286803374235, 'MAE': 358.0537563538895, 'SMAPE': 0.076, 'ErrorMean': 40.21660415591859, 'ErrorStdDev': 426.034717136403, 'R2': 0.4190935813387283, 'Pearson': 0.66853292177471, 'MedAE': 279.74015894845706, 'LnQ': 0.3630531739029509} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Melbourne_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.083, 'RMSE': 465.4341442432312, 'MAE': 386.1197338040967, 'SMAPE': 0.0821, 'ErrorMean': 48.229759921429626, 'ErrorStdDev': 462.9285397179031, 'R2': 0.31280519732123, 'Pearson': 0.6117925144508878, 'MedAE': 377.1860973524599, 'LnQ': 0.4260911065878341} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Melbourne_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.083, 'RMSE': 465.4341442432312, 'MAE': 386.1197338040967, 'SMAPE': 0.0821, 'ErrorMean': 48.229759921429626, 'ErrorStdDev': 462.9285397179031, 'R2': 0.31280519732123, 'Pearson': 0.6117925144508878, 'MedAE': 377.1860973524599, 'LnQ': 0.4260911065878341} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0845, 'RMSE': 1683.3379373205662, 'MAE': 1349.2683294826215, 'SMAPE': 0.0825, 'ErrorMean': 53.74823759976855, 'ErrorStdDev': 1682.4796397512744, 'R2': 0.6880376164203431, 'Pearson': 0.9122844522559981, 'MedAE': 1235.0952988631534, 'LnQ': 0.46696945118725736} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0845, 'RMSE': 1683.3379373205662, 'MAE': 1349.2683294826215, 'SMAPE': 0.0825, 'ErrorMean': 53.74823759976855, 'ErrorStdDev': 1682.4796397512744, 'R2': 0.6880376164203431, 'Pearson': 0.9122844522559981, 'MedAE': 1235.0952988631534, 'LnQ': 0.46696945118725736} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_BU_Forecast', 'Length': 44, 'MAPE': 0.0465, 'RMSE': 987.8115734012507, 'MAE': 718.0681818181819, 'SMAPE': 0.046, 'ErrorMean': 73.47727272727273, 'ErrorStdDev': 985.0750199543263, 'R2': 0.8925743901564223, 'Pearson': 0.9451029550194883, 'MedAE': 503.0, 'LnQ': 0.1852592908864313} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_BU_Forecast', 'Length': 44, 'MAPE': 0.0465, 'RMSE': 987.8115734012507, 'MAE': 718.0681818181819, 'SMAPE': 0.046, 'ErrorMean': 73.47727272727273, 'ErrorStdDev': 985.0750199543263, 'R2': 0.8925743901564223, 'Pearson': 0.9451029550194883, 'MedAE': 503.0, 'LnQ': 0.1852592908864313} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_MO_Forecast', 'Length': 44, 'MAPE': 0.051, 'RMSE': 1006.8184226196727, 'MAE': 815.6706475381166, 'SMAPE': 0.0507, 'ErrorMean': -0.7785469391226963, 'ErrorStdDev': 1006.8181216044086, 'R2': 0.8884005858497667, 'Pearson': 0.9549017189460913, 'MedAE': 668.2323529074101, 'LnQ': 0.16978285031418597} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_MO_Forecast', 'Length': 44, 'MAPE': 0.051, 'RMSE': 1006.8184226196727, 'MAE': 815.6706475381166, 'SMAPE': 0.0507, 'ErrorMean': -0.7785469391226963, 'ErrorStdDev': 1006.8181216044086, 'R2': 0.8884005858497667, 'Pearson': 0.9549017189460913, 'MedAE': 668.2323529074101, 'LnQ': 0.16978285031418597} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_OC_Forecast', 'Length': 44, 'MAPE': 0.0454, 'RMSE': 939.8443171946627, 'MAE': 700.6063512041301, 'SMAPE': 0.0447, 'ErrorMean': 144.51421969711993, 'ErrorStdDev': 928.6673144180506, 'R2': 0.9027540670658176, 'Pearson': 0.9513464888418198, 'MedAE': 531.6860472529179, 'LnQ': 0.16776172940515383} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_OC_Forecast', 'Length': 44, 'MAPE': 0.0454, 'RMSE': 939.8443171946627, 'MAE': 700.6063512041301, 'SMAPE': 0.0447, 'ErrorMean': 144.51421969711993, 'ErrorStdDev': 928.6673144180506, 'R2': 0.9027540670658176, 'Pearson': 0.9513464888418198, 'MedAE': 531.6860472529179, 'LnQ': 0.16776172940515383} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0859, 'RMSE': 1683.0876364371316, 'MAE': 1356.205778735068, 'SMAPE': 0.0833, 'ErrorMean': 164.51466410476107, 'ErrorStdDev': 1675.0280347570388, 'R2': 0.6881303828853098, 'Pearson': 0.9122844522559977, 'MedAE': 1227.0175201033271, 'LnQ': 0.4779197896558915} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0859, 'RMSE': 1683.0876364371316, 'MAE': 1356.205778735068, 'SMAPE': 0.0833, 'ErrorMean': 164.51466410476107, 'ErrorStdDev': 1675.0280347570388, 'R2': 0.6881303828853098, 'Pearson': 0.9122844522559977, 'MedAE': 1227.0175201033271, 'LnQ': 0.4779197896558915} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0694, 'RMSE': 1803.8404720009876, 'MAE': 1470.1002994265866, 'SMAPE': 0.0677, 'ErrorMean': 151.52536029696213, 'ErrorStdDev': 1797.465024309408, 'R2': 0.7289925806395989, 'Pearson': 0.8931282772664035, 'MedAE': 1207.5512645309282, 'LnQ': 0.3164838777211927} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0694, 'RMSE': 1803.8404720009876, 'MAE': 1470.1002994265866, 'SMAPE': 0.0677, 'ErrorMean': 151.52536029696213, 'ErrorStdDev': 1797.465024309408, 'R2': 0.7289925806395989, 'Pearson': 0.8931282772664035, 'MedAE': 1207.5512645309282, 'LnQ': 0.3164838777211927} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0408, 'RMSE': 1144.1632267718874, 'MAE': 864.2155932819362, 'SMAPE': 0.0407, 'ErrorMean': -52.84151316113019, 'ErrorStdDev': 1142.942371243581, 'R2': 0.8909662627803003, 'Pearson': 0.9444143200613909, 'MedAE': 628.8886728467824, 'LnQ': 0.13342271146416468} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0408, 'RMSE': 1144.1632267718874, 'MAE': 864.2155932819362, 'SMAPE': 0.0407, 'ErrorMean': -52.84151316113019, 'ErrorStdDev': 1142.942371243581, 'R2': 0.8909662627803003, 'Pearson': 0.9444143200613909, 'MedAE': 628.8886728467824, 'LnQ': 0.13342271146416468} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_State_MO_Forecast', 'Length': 44, 'MAPE': 0.034, 'RMSE': 979.3716750912564, 'MAE': 727.754839184349, 'SMAPE': 0.0338, 'ErrorMean': -1.0623029012320495, 'ErrorStdDev': 979.3710989627984, 'R2': 0.9201122837859887, 'Pearson': 0.9592555371332374, 'MedAE': 577.9947491135517, 'LnQ': 0.09448576246509134} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_State_MO_Forecast', 'Length': 44, 'MAPE': 0.034, 'RMSE': 979.3716750912564, 'MAE': 727.754839184349, 'SMAPE': 0.0338, 'ErrorMean': -1.0623029012320495, 'ErrorStdDev': 979.3710989627984, 'R2': 0.9201122837859887, 'Pearson': 0.9592555371332374, 'MedAE': 577.9947491135517, 'LnQ': 0.09448576246509134} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0378, 'RMSE': 1060.5569035455092, 'MAE': 801.488337310101, 'SMAPE': 0.0374, 'ErrorMean': 89.23238077853165, 'ErrorStdDev': 1056.796351185333, 'R2': 0.9063187066914318, 'Pearson': 0.9523987523402473, 'MedAE': 625.5438861714993, 'LnQ': 0.11480755559556854} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0378, 'RMSE': 1060.5569035455092, 'MAE': 801.488337310101, 'SMAPE': 0.0374, 'ErrorMean': 89.23238077853165, 'ErrorStdDev': 1056.796351185333, 'R2': 0.9063187066914318, 'Pearson': 0.9523987523402473, 'MedAE': 625.5438861714993, 'LnQ': 0.11480755559556854} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0698, 'RMSE': 1807.859372713356, 'MAE': 1469.4005036116775, 'SMAPE': 0.0679, 'ErrorMean': 224.47510380135256, 'ErrorStdDev': 1793.869125460634, 'R2': 0.7277836431243209, 'Pearson': 0.8931282772664035, 'MedAE': 1171.8376369343023, 'LnQ': 0.32100270414751053} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0698, 'RMSE': 1807.859372713356, 'MAE': 1469.4005036116775, 'SMAPE': 0.0679, 'ErrorMean': 224.47510380135256, 'ErrorStdDev': 1793.869125460634, 'R2': 0.7277836431243209, 'Pearson': 0.8931282772664035, 'MedAE': 1171.8376369343023, 'LnQ': 0.32100270414751053} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1033, 'RMSE': 1361.136616673421, 'MAE': 1109.6787696261172, 'SMAPE': 0.1012, 'ErrorMean': 148.18921358185497, 'ErrorStdDev': 1353.0457664939345, 'R2': -0.4295939437576628, 'Pearson': 0.2519861919832865, 'MedAE': 1094.8311235076617, 'LnQ': 0.6641811555806976} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1033, 'RMSE': 1361.136616673421, 'MAE': 1109.6787696261172, 'SMAPE': 0.1012, 'ErrorMean': 148.18921358185497, 'ErrorStdDev': 1353.0457664939345, 'R2': -0.4295939437576628, 'Pearson': 0.2519861919832865, 'MedAE': 1094.8311235076617, 'LnQ': 0.6641811555806976} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_BU_Forecast', 'Length': 44, 'MAPE': 0.0692, 'RMSE': 955.3693835846474, 'MAE': 721.9318181818181, 'SMAPE': 0.0676, 'ErrorMean': 59.93181818181818, 'ErrorStdDev': 953.4877221340245, 'R2': 0.29570938060484053, 'Pearson': 0.5464561094756151, 'MedAE': 666.5, 'LnQ': 0.3582189938843262} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_BU_Forecast', 'Length': 44, 'MAPE': 0.0692, 'RMSE': 955.3693835846474, 'MAE': 721.9318181818181, 'SMAPE': 0.0676, 'ErrorMean': 59.93181818181818, 'ErrorStdDev': 953.4877221340245, 'R2': 0.29570938060484053, 'Pearson': 0.5464561094756151, 'MedAE': 666.5, 'LnQ': 0.3582189938843262} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_MO_Forecast', 'Length': 44, 'MAPE': 0.072, 'RMSE': 981.5535994405298, 'MAE': 757.060080778287, 'SMAPE': 0.0708, 'ErrorMean': 35.2288363401746, 'ErrorStdDev': 980.9211984990319, 'R2': 0.25657475440456146, 'Pearson': 0.5075089347431032, 'MedAE': 671.3109816572942, 'LnQ': 0.3746690547302023} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_MO_Forecast', 'Length': 44, 'MAPE': 0.072, 'RMSE': 981.5535994405298, 'MAE': 757.060080778287, 'SMAPE': 0.0708, 'ErrorMean': 35.2288363401746, 'ErrorStdDev': 980.9211984990319, 'R2': 0.25657475440456146, 'Pearson': 0.5075089347431032, 'MedAE': 671.3109816572942, 'LnQ': 0.3746690547302023} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_OC_Forecast', 'Length': 44, 'MAPE': 0.0721, 'RMSE': 990.7624928576073, 'MAE': 745.4312715498144, 'SMAPE': 0.0699, 'ErrorMean': 136.37569506501575, 'ErrorStdDev': 981.3317415884163, 'R2': 0.24255975028638532, 'Pearson': 0.5068818183759451, 'MedAE': 604.6878194251622, 'LnQ': 0.38918375799467225} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_OC_Forecast', 'Length': 44, 'MAPE': 0.0721, 'RMSE': 990.7624928576073, 'MAE': 745.4312715498144, 'SMAPE': 0.0699, 'ErrorMean': 136.37569506501575, 'ErrorStdDev': 981.3317415884163, 'R2': 0.24255975028638532, 'Pearson': 0.5068818183759451, 'MedAE': 604.6878194251622, 'LnQ': 0.38918375799467225} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1027, 'RMSE': 1355.1400310041652, 'MAE': 1106.0518056065846, 'SMAPE': 0.101, 'ErrorMean': 108.69604620740455, 'ErrorStdDev': 1350.7737312995275, 'R2': -0.4170253321059869, 'Pearson': 0.25198619198328676, 'MedAE': 1058.7956324188235, 'LnQ': 0.6599644574502441} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1027, 'RMSE': 1355.1400310041652, 'MAE': 1106.0518056065846, 'SMAPE': 0.101, 'ErrorMean': 108.69604620740455, 'ErrorStdDev': 1350.7737312995275, 'R2': -0.4170253321059869, 'Pearson': 0.25198619198328676, 'MedAE': 1058.7956324188235, 'LnQ': 0.6599644574502441} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0706, 'RMSE': 1607.2907199515273, 'MAE': 1297.1287332095992, 'SMAPE': 0.0689, 'ErrorMean': 265.6866463778375, 'ErrorStdDev': 1585.1795054121776, 'R2': -0.014113127307270101, 'Pearson': 0.5891017944743169, 'MedAE': 1185.9679648613128, 'LnQ': 0.31180349361053694} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0706, 'RMSE': 1607.2907199515273, 'MAE': 1297.1287332095992, 'SMAPE': 0.0689, 'ErrorMean': 265.6866463778375, 'ErrorStdDev': 1585.1795054121776, 'R2': -0.014113127307270101, 'Pearson': 0.5891017944743169, 'MedAE': 1185.9679648613128, 'LnQ': 0.31180349361053694} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0515, 'RMSE': 1194.0341094564487, 'MAE': 937.5909090909091, 'SMAPE': 0.051, 'ErrorMean': -6.863636363636363, 'ErrorStdDev': 1194.014382258992, 'R2': 0.440331329148694, 'Pearson': 0.6638984782397178, 'MedAE': 754.0, 'LnQ': 0.18749015564019203} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0515, 'RMSE': 1194.0341094564487, 'MAE': 937.5909090909091, 'SMAPE': 0.051, 'ErrorMean': -6.863636363636363, 'ErrorStdDev': 1194.014382258992, 'R2': 0.440331329148694, 'Pearson': 0.6638984782397178, 'MedAE': 754.0, 'LnQ': 0.18749015564019203} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_State_MO_Forecast', 'Length': 44, 'MAPE': 0.0503, 'RMSE': 1240.6616819628584, 'MAE': 907.9545454545455, 'SMAPE': 0.0494, 'ErrorMean': 61.13636363636363, 'ErrorStdDev': 1239.1544512820956, 'R2': 0.3957672392950735, 'Pearson': 0.6303332298305678, 'MedAE': 668.0, 'LnQ': 0.2031466903810693} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_State_MO_Forecast', 'Length': 44, 'MAPE': 0.0503, 'RMSE': 1240.6616819628584, 'MAE': 907.9545454545455, 'SMAPE': 0.0494, 'ErrorMean': 61.13636363636363, 'ErrorStdDev': 1239.1544512820956, 'R2': 0.3957672392950735, 'Pearson': 0.6303332298305678, 'MedAE': 668.0, 'LnQ': 0.2031466903810693} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0522, 'RMSE': 1240.3407843486953, 'MAE': 940.1365621404816, 'SMAPE': 0.0512, 'ErrorMean': 146.02411740275173, 'ErrorStdDev': 1231.715153132202, 'R2': 0.39607976893692687, 'Pearson': 0.6366787096032464, 'MedAE': 639.4191717379199, 'LnQ': 0.2047379436593345} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0522, 'RMSE': 1240.3407843486953, 'MAE': 940.1365621404816, 'SMAPE': 0.0512, 'ErrorMean': 146.02411740275173, 'ErrorStdDev': 1231.715153132202, 'R2': 0.39607976893692687, 'Pearson': 0.6366787096032464, 'MedAE': 639.4191717379199, 'LnQ': 0.2047379436593345} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0706, 'RMSE': 1591.9600174020397, 'MAE': 1299.374291087439, 'SMAPE': 0.0691, 'ErrorMean': 188.63186233581985, 'ErrorStdDev': 1580.7449881364237, 'R2': 0.005140291871057134, 'Pearson': 0.5891017944743169, 'MedAE': 1200.8366347830743, 'LnQ': 0.307700956225986} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0706, 'RMSE': 1591.9600174020397, 'MAE': 1299.374291087439, 'SMAPE': 0.0691, 'ErrorMean': 188.63186233581985, 'ErrorStdDev': 1580.7449881364237, 'R2': 0.005140291871057134, 'Pearson': 0.5891017944743169, 'MedAE': 1200.8366347830743, 'LnQ': 0.307700956225986} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1597, 'RMSE': 2197.167254317013, 'MAE': 1723.488172637466, 'SMAPE': 0.155, 'ErrorMean': 136.72565144817634, 'ErrorStdDev': 2192.909035887953, 'R2': -0.457377271728455, 'Pearson': -0.08916954208201053, 'MedAE': 1446.0322043339747, 'LnQ': 1.6715061358808236} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1597, 'RMSE': 2197.167254317013, 'MAE': 1723.488172637466, 'SMAPE': 0.155, 'ErrorMean': 136.72565144817634, 'ErrorStdDev': 2192.909035887953, 'R2': -0.457377271728455, 'Pearson': -0.08916954208201053, 'MedAE': 1446.0322043339747, 'LnQ': 1.6715061358808236} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_BU_Forecast', 'Length': 44, 'MAPE': 0.0654, 'RMSE': 907.8588822058194, 'MAE': 701.2954545454545, 'SMAPE': 0.065, 'ErrorMean': -37.38636363636363, 'ErrorStdDev': 907.0887552020748, 'R2': 0.7511816244233342, 'Pearson': 0.8674625497115258, 'MedAE': 570.5, 'LnQ': 0.3104085461761201} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_BU_Forecast', 'Length': 44, 'MAPE': 0.0654, 'RMSE': 907.8588822058194, 'MAE': 701.2954545454545, 'SMAPE': 0.065, 'ErrorMean': -37.38636363636363, 'ErrorStdDev': 907.0887552020748, 'R2': 0.7511816244233342, 'Pearson': 0.8674625497115258, 'MedAE': 570.5, 'LnQ': 0.3104085461761201} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_MO_Forecast', 'Length': 44, 'MAPE': 0.083, 'RMSE': 1139.6475572238442, 'MAE': 879.959497439337, 'SMAPE': 0.0812, 'ErrorMean': 43.621798893562634, 'ErrorStdDev': 1138.8124048093105, 'R2': 0.6079089902495953, 'Pearson': 0.8053204951882434, 'MedAE': 685.5547997996773, 'LnQ': 0.47676146487099236} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_MO_Forecast', 'Length': 44, 'MAPE': 0.083, 'RMSE': 1139.6475572238442, 'MAE': 879.959497439337, 'SMAPE': 0.0812, 'ErrorMean': 43.621798893562634, 'ErrorStdDev': 1138.8124048093105, 'R2': 0.6079089902495953, 'Pearson': 0.8053204951882434, 'MedAE': 685.5547997996773, 'LnQ': 0.47676146487099236} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_OC_Forecast', 'Length': 44, 'MAPE': 0.0668, 'RMSE': 899.2884816533277, 'MAE': 712.8808663019946, 'SMAPE': 0.066, 'ErrorMean': 11.057513246826726, 'ErrorStdDev': 899.2204983401701, 'R2': 0.7558572577449074, 'Pearson': 0.8709622408397037, 'MedAE': 561.5646856460926, 'LnQ': 0.30502199741795016} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_OC_Forecast', 'Length': 44, 'MAPE': 0.0668, 'RMSE': 899.2884816533277, 'MAE': 712.8808663019946, 'SMAPE': 0.066, 'ErrorMean': 11.057513246826726, 'ErrorStdDev': 899.2204983401701, 'R2': 0.7558572577449074, 'Pearson': 0.8709622408397037, 'MedAE': 561.5646856460926, 'LnQ': 0.30502199741795016} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1587, 'RMSE': 2194.043477810483, 'MAE': 1716.2005277790456, 'SMAPE': 0.1544, 'ErrorMean': 108.74009334396843, 'ErrorStdDev': 2191.347159767768, 'R2': -0.4532362263455427, 'Pearson': -0.0891695420820103, 'MedAE': 1423.9102415218904, 'LnQ': 1.6668201427872829} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1587, 'RMSE': 2194.043477810483, 'MAE': 1716.2005277790456, 'SMAPE': 0.1544, 'ErrorMean': 108.74009334396843, 'ErrorStdDev': 2191.347159767768, 'R2': -0.4532362263455427, 'Pearson': -0.0891695420820103, 'MedAE': 1423.9102415218904, 'LnQ': 1.6668201427872829} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1131, 'RMSE': 2620.112787501165, 'MAE': 2136.909284536116, 'SMAPE': 0.1111, 'ErrorMean': 306.0361163230169, 'ErrorStdDev': 2602.178494018627, 'R2': -0.34331617854639784, 'Pearson': 0.2195016947075636, 'MedAE': 1897.2603066954562, 'LnQ': 0.7973459760385112} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1131, 'RMSE': 2620.112787501165, 'MAE': 2136.909284536116, 'SMAPE': 0.1111, 'ErrorMean': 306.0361163230169, 'ErrorStdDev': 2602.178494018627, 'R2': -0.34331617854639784, 'Pearson': 0.2195016947075636, 'MedAE': 1897.2603066954562, 'LnQ': 0.7973459760385112} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0512, 'RMSE': 1153.4137080068808, 'MAE': 934.5909090909091, 'SMAPE': 0.0504, 'ErrorMean': 92.13636363636364, 'ErrorStdDev': 1149.727825319562, 'R2': 0.7396794284983607, 'Pearson': 0.8613958375031755, 'MedAE': 787.5, 'LnQ': 0.17390807623776244} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0512, 'RMSE': 1153.4137080068808, 'MAE': 934.5909090909091, 'SMAPE': 0.0504, 'ErrorMean': 92.13636363636364, 'ErrorStdDev': 1149.727825319562, 'R2': 0.7396794284983607, 'Pearson': 0.8613958375031755, 'MedAE': 787.5, 'LnQ': 0.17390807623776244} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_State_MO_Forecast', 'Length': 44, 'MAPE': 0.0506, 'RMSE': 1152.847206622882, 'MAE': 925.2272727272727, 'SMAPE': 0.0499, 'ErrorMean': 76.13636363636364, 'ErrorStdDev': 1150.3303594839238, 'R2': 0.7399350796102638, 'Pearson': 0.8609182686947952, 'MedAE': 778.0, 'LnQ': 0.17345869976483153} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_State_MO_Forecast', 'Length': 44, 'MAPE': 0.0506, 'RMSE': 1152.847206622882, 'MAE': 925.2272727272727, 'SMAPE': 0.0499, 'ErrorMean': 76.13636363636364, 'ErrorStdDev': 1150.3303594839238, 'R2': 0.7399350796102638, 'Pearson': 0.8609182686947952, 'MedAE': 778.0, 'LnQ': 0.17345869976483153} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0512, 'RMSE': 1156.3052105894146, 'MAE': 931.2749129181615, 'SMAPE': 0.0502, 'ErrorMean': 189.0241174027361, 'ErrorStdDev': 1140.7504648591412, 'R2': 0.7383725928042509, 'Pearson': 0.8648468057069634, 'MedAE': 824.3594175529688, 'LnQ': 0.17528877183361435} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0512, 'RMSE': 1156.3052105894146, 'MAE': 931.2749129181615, 'SMAPE': 0.0502, 'ErrorMean': 189.0241174027361, 'ErrorStdDev': 1140.7504648591412, 'R2': 0.7383725928042509, 'Pearson': 0.8648468057069634, 'MedAE': 824.3594175529688, 'LnQ': 0.17528877183361435} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.111, 'RMSE': 2603.002075518849, 'MAE': 2106.1020282448353, 'SMAPE': 0.1097, 'ErrorMean': 189.79215664373316, 'ErrorStdDev': 2596.073716679084, 'R2': -0.3258283482750115, 'Pearson': 0.21950169470756378, 'MedAE': 1887.5427085901483, 'LnQ': 0.7886743041947604} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.111, 'RMSE': 2603.002075518849, 'MAE': 2106.1020282448353, 'SMAPE': 0.1097, 'ErrorMean': 189.79215664373316, 'ErrorStdDev': 2596.073716679084, 'R2': -0.3258283482750115, 'Pearson': 0.21950169470756378, 'MedAE': 1887.5427085901483, 'LnQ': 0.7886743041947604} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Sydney_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0949, 'RMSE': 736.5931981832166, 'MAE': 558.1109959348945, 'SMAPE': 0.0935, 'ErrorMean': 97.77712269719382, 'ErrorStdDev': 730.0747728053868, 'R2': 0.08153579876930639, 'Pearson': 0.4491851706029048, 'MedAE': 470.0728505418906, 'LnQ': 0.6335144519950788} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Sydney_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.0949, 'RMSE': 736.5931981832166, 'MAE': 558.1109959348945, 'SMAPE': 0.0935, 'ErrorMean': 97.77712269719382, 'ErrorStdDev': 730.0747728053868, 'R2': 0.08153579876930639, 'Pearson': 0.4491851706029048, 'MedAE': 470.0728505418906, 'LnQ': 0.6335144519950788} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Sydney_BU_Forecast', 'Length': 44, 'MAPE': 0.0607, 'RMSE': 558.1781992520187, 'MAE': 370.61340163762037, 'SMAPE': 0.0622, 'ErrorMean': -126.31878588840276, 'ErrorStdDev': 543.6970355371695, 'R2': 0.47258489255630043, 'Pearson': 0.7104826236354816, 'MedAE': 250.3304272839987, 'LnQ': 0.3485078512843014} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Sydney_BU_Forecast', 'Length': 44, 'MAPE': 0.0607, 'RMSE': 558.1781992520187, 'MAE': 370.61340163762037, 'SMAPE': 0.0622, 'ErrorMean': -126.31878588840276, 'ErrorStdDev': 543.6970355371695, 'R2': 0.47258489255630043, 'Pearson': 0.7104826236354816, 'MedAE': 250.3304272839987, 'LnQ': 0.3485078512843014} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Sydney_MO_Forecast', 'Length': 44, 'MAPE': 0.0898, 'RMSE': 762.1984542585885, 'MAE': 554.0595449531894, 'SMAPE': 0.0897, 'ErrorMean': -0.2837559621093119, 'ErrorStdDev': 762.1984014393731, 'R2': 0.01657113211821326, 'Pearson': 0.5801928182761824, 'MedAE': 372.9720778592309, 'LnQ': 0.6233750211638044} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Sydney_MO_Forecast', 'Length': 44, 'MAPE': 0.0898, 'RMSE': 762.1984542585885, 'MAE': 554.0595449531894, 'SMAPE': 0.0897, 'ErrorMean': -0.2837559621093119, 'ErrorStdDev': 762.1984014393731, 'R2': 0.01657113211821326, 'Pearson': 0.5801928182761824, 'MedAE': 372.9720778592309, 'LnQ': 0.6233750211638044} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Sydney_OC_Forecast', 'Length': 44, 'MAPE': 0.0644, 'RMSE': 558.446948405196, 'MAE': 389.71345623311373, 'SMAPE': 0.0652, 'ErrorMean': -55.28183891858777, 'ErrorStdDev': 555.703979173134, 'R2': 0.4720768953381025, 'Pearson': 0.6943065371796711, 'MedAE': 287.9746557991375, 'LnQ': 0.3532300417237918} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Sydney_OC_Forecast', 'Length': 44, 'MAPE': 0.0644, 'RMSE': 558.446948405196, 'MAE': 389.71345623311373, 'SMAPE': 0.0652, 'ErrorMean': -55.28183891858777, 'ErrorStdDev': 555.703979173134, 'R2': 0.4720768953381025, 'Pearson': 0.6943065371796711, 'MedAE': 287.9746557991375, 'LnQ': 0.3532300417237918} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Sydney_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0937, 'RMSE': 731.271047707456, 'MAE': 553.6040589118197, 'SMAPE': 0.0929, 'ErrorMean': 59.96043969659172, 'ErrorStdDev': 728.8086792063826, 'R2': 0.0947603172147633, 'Pearson': 0.4491851706029047, 'MedAE': 429.81008137818844, 'LnQ': 0.6240640451952836} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Sydney_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.0937, 'RMSE': 731.271047707456, 'MAE': 553.6040589118197, 'SMAPE': 0.0929, 'ErrorMean': 59.96043969659172, 'ErrorStdDev': 728.8086792063826, 'R2': 0.0947603172147633, 'Pearson': 0.4491851706029047, 'MedAE': 429.81008137818844, 'LnQ': 0.6240640451952836} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1739, 'RMSE': 1926.1903255945274, 'MAE': 1551.7771198356747, 'SMAPE': 0.1702, 'ErrorMean': -119.61157836517486, 'ErrorStdDev': 1922.4729492856181, 'R2': 0.48307876481451706, 'Pearson': 0.9208600514552417, 'MedAE': 1386.529172457812, 'LnQ': 1.791115790455664} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1739, 'RMSE': 1926.1903255945274, 'MAE': 1551.7771198356747, 'SMAPE': 0.1702, 'ErrorMean': -119.61157836517486, 'ErrorStdDev': 1922.4729492856181, 'R2': 0.48307876481451706, 'Pearson': 0.9208600514552417, 'MedAE': 1386.529172457812, 'LnQ': 1.791115790455664} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_BU_Forecast', 'Length': 44, 'MAPE': 0.0516, 'RMSE': 530.0781460398937, 'MAE': 424.20454545454544, 'SMAPE': 0.0511, 'ErrorMean': 14.75, 'ErrorStdDev': 529.8728889168523, 'R2': 0.9608523426800629, 'Pearson': 0.9803775115824175, 'MedAE': 365.5, 'LnQ': 0.18156516923566438} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_BU_Forecast', 'Length': 44, 'MAPE': 0.0516, 'RMSE': 530.0781460398937, 'MAE': 424.20454545454544, 'SMAPE': 0.0511, 'ErrorMean': 14.75, 'ErrorStdDev': 529.8728889168523, 'R2': 0.9608523426800629, 'Pearson': 0.9803775115824175, 'MedAE': 365.5, 'LnQ': 0.18156516923566438} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_MO_Forecast', 'Length': 44, 'MAPE': 0.0885, 'RMSE': 904.4324304538285, 'MAE': 749.0641921317176, 'SMAPE': 0.0861, 'ErrorMean': 59.980197923553305, 'ErrorStdDev': 902.4413538361763, 'R2': 0.8860332320616641, 'Pearson': 0.9766390290861455, 'MedAE': 676.8136319910195, 'LnQ': 0.45695906319033297} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_MO_Forecast', 'Length': 44, 'MAPE': 0.0885, 'RMSE': 904.4324304538285, 'MAE': 749.0641921317176, 'SMAPE': 0.0861, 'ErrorMean': 59.980197923553305, 'ErrorStdDev': 902.4413538361763, 'R2': 0.8860332320616641, 'Pearson': 0.9766390290861455, 'MedAE': 676.8136319910195, 'LnQ': 0.45695906319033297} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_OC_Forecast', 'Length': 44, 'MAPE': 0.0571, 'RMSE': 562.530997730668, 'MAE': 460.5947764232256, 'SMAPE': 0.0557, 'ErrorMean': 114.19387688318675, 'ErrorStdDev': 550.8183746846581, 'R2': 0.9559121524252976, 'Pearson': 0.9786711976405591, 'MedAE': 409.3739627724008, 'LnQ': 0.21287660062447877} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_OC_Forecast', 'Length': 44, 'MAPE': 0.0571, 'RMSE': 562.530997730668, 'MAE': 460.5947764232256, 'SMAPE': 0.0557, 'ErrorMean': 114.19387688318675, 'ErrorStdDev': 550.8183746846581, 'R2': 0.9559121524252976, 'Pearson': 0.9786711976405591, 'MedAE': 409.3739627724008, 'LnQ': 0.21287660062447877} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1853, 'RMSE': 1907.2047172118753, 'MAE': 1598.7959958905217, 'SMAPE': 0.1772, 'ErrorMean': 88.89384457038632, 'ErrorStdDev': 1905.131942347491, 'R2': 0.4932186742051722, 'Pearson': 0.9208600514552415, 'MedAE': 1586.5778474769068, 'LnQ': 1.8651530741035445} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1853, 'RMSE': 1907.2047172118753, 'MAE': 1598.7959958905217, 'SMAPE': 0.1772, 'ErrorMean': 88.89384457038632, 'ErrorStdDev': 1905.131942347491, 'R2': 0.4932186742051722, 'Pearson': 0.9208600514552415, 'MedAE': 1586.5778474769068, 'LnQ': 1.8651530741035445} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1165, 'RMSE': 1877.6320818529753, 'MAE': 1571.903347892526, 'SMAPE': 0.1139, 'ErrorMean': 16.77460427491294, 'ErrorStdDev': 1877.5571489184981, 'R2': 0.6188672593332856, 'Pearson': 0.924103867925855, 'MedAE': 1550.5346280443728, 'LnQ': 0.7881908312334992} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_State_AHP_TD_Forecast', 'Length': 44, 'MAPE': 0.1165, 'RMSE': 1877.6320818529753, 'MAE': 1571.903347892526, 'SMAPE': 0.1139, 'ErrorMean': 16.77460427491294, 'ErrorStdDev': 1877.5571489184981, 'R2': 0.6188672593332856, 'Pearson': 0.924103867925855, 'MedAE': 1550.5346280443728, 'LnQ': 0.7881908312334992} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0417, 'RMSE': 680.2621653718246, 'MAE': 527.4772727272727, 'SMAPE': 0.0417, 'ErrorMean': -44.47727272727273, 'ErrorStdDev': 678.8065894252261, 'R2': 0.9499726039950437, 'Pearson': 0.9748137776870249, 'MedAE': 416.5, 'LnQ': 0.13268137123942822} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0417, 'RMSE': 680.2621653718246, 'MAE': 527.4772727272727, 'SMAPE': 0.0417, 'ErrorMean': -44.47727272727273, 'ErrorStdDev': 678.8065894252261, 'R2': 0.9499726039950437, 'Pearson': 0.9748137776870249, 'MedAE': 416.5, 'LnQ': 0.13268137123942822} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_State_MO_Forecast', 'Length': 44, 'MAPE': 0.0409, 'RMSE': 688.3676178269336, 'MAE': 511.6136363636364, 'SMAPE': 0.0404, 'ErrorMean': 92.52272727272727, 'ErrorStdDev': 682.1213398001443, 'R2': 0.9487733297344288, 'Pearson': 0.9745249001884253, 'MedAE': 431.5, 'LnQ': 0.13749652910455054} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_State_MO_Forecast', 'Length': 44, 'MAPE': 0.0409, 'RMSE': 688.3676178269336, 'MAE': 511.6136363636364, 'SMAPE': 0.0404, 'ErrorMean': 92.52272727272727, 'ErrorStdDev': 682.1213398001443, 'R2': 0.9487733297344288, 'Pearson': 0.9745249001884253, 'MedAE': 431.5, 'LnQ': 0.13749652910455054} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0457, 'RMSE': 722.9043684390062, 'MAE': 571.4447630028999, 'SMAPE': 0.045, 'ErrorMean': 154.41048103910617, 'ErrorStdDev': 706.221020115849, 'R2': 0.9435040960558351, 'Pearson': 0.972903071849157, 'MedAE': 461.51681837946853, 'LnQ': 0.14973489730623754} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_State_OC_Forecast', 'Length': 44, 'MAPE': 0.0457, 'RMSE': 722.9043684390062, 'MAE': 571.4447630028999, 'SMAPE': 0.045, 'ErrorMean': 154.41048103910617, 'ErrorStdDev': 706.221020115849, 'R2': 0.9435040960558351, 'Pearson': 0.972903071849157, 'MedAE': 461.51681837946853, 'LnQ': 0.14973489730623754} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1197, 'RMSE': 1873.215716830975, 'MAE': 1593.9402484525658, 'SMAPE': 0.1161, 'ErrorMean': 137.1236044918144, 'ErrorStdDev': 1868.190097092305, 'R2': 0.6206580699766043, 'Pearson': 0.9241038679258549, 'MedAE': 1545.8555464324327, 'LnQ': 0.807210144388958} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_State_PHA_TD_Forecast', 'Length': 44, 'MAPE': 0.1197, 'RMSE': 1873.215716830975, 'MAE': 1593.9402484525658, 'SMAPE': 0.1161, 'ErrorMean': 137.1236044918144, 'ErrorStdDev': 1868.190097092305, 'R2': 0.6206580699766043, 'Pearson': 0.9241038679258549, 'MedAE': 1545.8555464324327, 'LnQ': 0.807210144388958} -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 13.887, 'HIERARCHICAL_TRAINING') -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BrisbaneGC' Length=44 Min=5616 Max=9970 Mean=7945.977272727273 StdDev=953.1993850529327 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BrisbaneGC' Min=0.0 Max=1.0 Mean=0.5351348811959743 StdDev=0.2189249850833562 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_BrisbaneGC_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.059 MAPE_Forecast=0.059 MAPE_Test=0.059 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0568 SMAPE_Forecast=0.0568 SMAPE_Test=0.0568 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.3197 MASE_Forecast=0.3197 MASE_Test=0.3197 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=197.67945714285716 CRPS_Forecast=197.67945714285716 CRPS_Test=197.67945714285716 -INFO:pyaf.std:MODEL_L1 L1_Fit=440.84090909090907 L1_Forecast=440.84090909090907 L1_Test=440.84090909090907 -INFO:pyaf.std:MODEL_L2 L2_Fit=614.1944650589835 L2_Forecast=614.1944650589835 L2_Test=614.1944650589835 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.2888940646786469 LnQ_Forecast=0.2888940646786469 LnQ_Test=0.2888940646786469 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=353.0 MedAE_Forecast=353.0 MedAE_Test=353.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _BrisbaneGC_ConstantTrend 0.5351348811959743 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear 0.06201716290140741 {1: 0.26206309767403024, 4: -0.21336179897273133, 7: 0.07464922537269814, 10: -0.004358583538647709} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Capitals' Length=44 Min=6362 Max=10484 Mean=7836.545454545455 StdDev=889.8031307936874 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Capitals' Min=0.0 Max=1.0 Mean=0.35772572890476817 StdDev=0.21586684395771172 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Capitals_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0577 MAPE_Forecast=0.0577 MAPE_Test=0.0577 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0582 SMAPE_Forecast=0.0582 SMAPE_Test=0.0582 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.4024 MASE_Forecast=0.4024 MASE_Test=0.4024 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=172.35505714285713 CRPS_Forecast=172.35505714285713 CRPS_Test=172.35505714285713 -INFO:pyaf.std:MODEL_L1 L1_Fit=460.8863636363636 L1_Forecast=460.8863636363636 L1_Test=460.8863636363636 -INFO:pyaf.std:MODEL_L2 L2_Fit=608.1757558469427 L2_Forecast=608.1757558469427 L2_Test=608.1757558469427 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.24876891335532347 LnQ_Forecast=0.24876891335532347 LnQ_Test=0.24876891335532347 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=322.5 MedAE_Forecast=322.5 MedAE_Test=322.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Capitals_ConstantTrend 0.35772572890476817 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Capitals_ConstantTrend_residue_Seasonal_MonthOfYear -0.026454501345331005 {1: 0.2645450134533104, 4: -0.15636716510078952, 7: -0.04525605398967841, 10: -0.12774028494552508} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Melbourne' Length=44 Min=3825 Max=5724 Mean=4728.227272727273 StdDev=561.459334868291 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Melbourne' Min=0.0 Max=1.0 Mean=0.47563310833453004 StdDev=0.2956605238906219 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Melbourne_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0737 MAPE_Forecast=0.0737 MAPE_Test=0.0737 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0743 SMAPE_Forecast=0.0743 SMAPE_Test=0.0743 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.5573 MASE_Forecast=0.5573 MASE_Test=0.5573 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=114.0804857142857 CRPS_Forecast=114.0804857142857 CRPS_Test=114.0804857142857 -INFO:pyaf.std:MODEL_L1 L1_Fit=348.45454545454544 L1_Forecast=348.45454545454544 L1_Test=348.45454545454544 -INFO:pyaf.std:MODEL_L2 L2_Fit=434.35490306681453 L2_Forecast=434.35490306681453 L2_Test=434.35490306681453 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3758072346191974 LnQ_Forecast=0.3758072346191974 LnQ_Test=0.3758072346191974 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=327.0 MedAE_Forecast=327.0 MedAE_Test=327.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Melbourne_ConstantTrend 0.47563310833453004 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear -0.01407439322131257 {1: 0.3421657331609939, 4: -0.2634161520417444, 7: -0.18863995404279754, 10: -0.014864282636794401} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW' Length=44 Min=12216 Max=22718 Mean=16128.272727272728 StdDev=3013.840025340945 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW' Min=0.0 Max=1.0 Mean=0.3725264451792732 StdDev=0.2869777209427676 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0465 MAPE_Forecast=0.0465 MAPE_Test=0.0465 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.046 SMAPE_Forecast=0.046 SMAPE_Test=0.046 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.2009 MASE_Forecast=0.2009 MASE_Test=0.2009 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=634.8099142857144 CRPS_Forecast=634.8099142857144 CRPS_Test=634.8099142857144 -INFO:pyaf.std:MODEL_L1 L1_Fit=718.0681818181819 L1_Forecast=718.0681818181819 L1_Test=718.0681818181819 -INFO:pyaf.std:MODEL_L2 L2_Fit=987.8115734012507 L2_Forecast=987.8115734012507 L2_Test=987.8115734012507 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.1852592908864313 LnQ_Forecast=0.1852592908864313 LnQ_Test=0.1852592908864313 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=503.0 MedAE_Forecast=503.0 MedAE_Test=503.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _NSW_ConstantTrend 0.3725264451792732 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _NSW_ConstantTrend_residue_Seasonal_MonthOfYear -0.12419279444607952 {1: 0.46483786638042973, 4: -0.13771402849673653, 7: -0.2211267117951559, 10: -0.07801111476601857} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Other' Length=44 Min=8281 Max=13098 Mean=10656.068181818182 StdDev=1138.4012592971872 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Other' Min=0.0 Max=1.0 Mean=0.4930596183969653 StdDev=0.23632992719476584 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Other_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Other_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0692 MAPE_Forecast=0.0692 MAPE_Test=0.0692 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0676 SMAPE_Forecast=0.0676 SMAPE_Test=0.0676 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.5248 MASE_Forecast=0.5248 MASE_Test=0.5248 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=169.26605714285716 CRPS_Forecast=169.26605714285716 CRPS_Test=169.26605714285716 -INFO:pyaf.std:MODEL_L1 L1_Fit=721.9318181818181 L1_Forecast=721.9318181818181 L1_Test=721.9318181818181 -INFO:pyaf.std:MODEL_L2 L2_Fit=955.3693835846474 L2_Forecast=955.3693835846474 L2_Test=955.3693835846474 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3582189938843262 LnQ_Forecast=0.3582189938843262 LnQ_Test=0.3582189938843262 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=666.5 MedAE_Forecast=666.5 MedAE_Test=666.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Other_ConstantTrend 0.4930596183969653 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Other_ConstantTrend_residue_Seasonal_MonthOfYear 0.012649329080717864 {1: 0.06371845924472042, 4: -0.20366788080095122, 7: 0.11727876648989366, 10: 0.07243757902881831} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='QLD' Length=44 Min=7600 Max=15078 Mean=10660.386363636364 StdDev=1820.0240285115756 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_QLD' Min=0.0 Max=1.0 Mean=0.40925198764861787 StdDev=0.24338379627060383 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_QLD_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0654 MAPE_Forecast=0.0654 MAPE_Test=0.0654 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.065 SMAPE_Forecast=0.065 SMAPE_Test=0.065 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.299 MASE_Forecast=0.299 MASE_Test=0.299 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=368.35511428571425 CRPS_Forecast=368.35511428571425 CRPS_Test=368.35511428571425 -INFO:pyaf.std:MODEL_L1 L1_Fit=701.2954545454545 L1_Forecast=701.2954545454545 L1_Test=701.2954545454545 -INFO:pyaf.std:MODEL_L2 L2_Fit=907.8588822058194 L2_Forecast=907.8588822058194 L2_Test=907.8588822058194 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3104085461761201 LnQ_Forecast=0.3104085461761201 LnQ_Test=0.3104085461761201 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=570.5 MedAE_Forecast=570.5 MedAE_Test=570.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _QLD_ConstantTrend 0.40925198764861787 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _QLD_ConstantTrend_residue_Seasonal_MonthOfYear -0.07727819786525333 {1: -0.09967723504096876, 4: -0.20050633373045793, 7: 0.33626820491623904, 10: -0.05608269104524799} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Sydney' Length=44 Min=4491 Max=8426 Mean=5878.25 StdDev=768.5932877962535 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Sydney' Min=0.0 Max=1.0 Mean=0.3525412960609912 StdDev=0.19532230947808218 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [LinearTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Sydney_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0607 MAPE_Forecast=0.0607 MAPE_Test=0.0607 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0622 SMAPE_Forecast=0.0622 SMAPE_Test=0.0622 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.5732 MASE_Forecast=0.5732 MASE_Test=0.5732 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=131.84690100287588 CRPS_Forecast=131.84690100287588 CRPS_Test=131.84690100287588 -INFO:pyaf.std:MODEL_L1 L1_Fit=370.61340163762037 L1_Forecast=370.61340163762037 L1_Test=370.61340163762037 -INFO:pyaf.std:MODEL_L2 L2_Fit=558.1781992520187 L2_Forecast=558.1781992520187 L2_Test=558.1781992520187 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3485078512843014 LnQ_Forecast=0.3485078512843014 LnQ_Test=0.3485078512843014 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=250.3304272839987 MedAE_Forecast=250.3304272839987 MedAE_Test=250.3304272839987 -INFO:pyaf.std:MODEL_COMPLEXITY 5.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.4965048948710057, array([-0.28803058])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Sydney_LinearTrend_residue_Seasonal_MonthOfYear -0.019296089718327747 {1: 0.09021539163904402, 4: -0.08670314467623061, 7: -0.1402640468526624, 10: 0.008346426686898223} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC' Length=44 Min=5800 Max=14071 Mean=8714.75 StdDev=2679.088193982491 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC' Min=0.0 Max=1.0 Mean=0.35240599685648655 StdDev=0.32391345592824217 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0516 MAPE_Forecast=0.0516 MAPE_Test=0.0516 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0511 SMAPE_Forecast=0.0511 SMAPE_Test=0.0511 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.1283 MASE_Forecast=0.1283 MASE_Test=0.1283 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=572.6305428571429 CRPS_Forecast=572.6305428571429 CRPS_Test=572.6305428571429 -INFO:pyaf.std:MODEL_L1 L1_Fit=424.20454545454544 L1_Forecast=424.20454545454544 L1_Test=424.20454545454544 -INFO:pyaf.std:MODEL_L2 L2_Fit=530.0781460398937 L2_Forecast=530.0781460398937 L2_Test=530.0781460398937 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.18156516923566438 LnQ_Forecast=0.18156516923566438 LnQ_Test=0.18156516923566438 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=365.5 MedAE_Forecast=365.5 MedAE_Test=365.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _VIC_ConstantTrend 0.35240599685648655 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _VIC_ConstantTrend_residue_Seasonal_MonthOfYear -0.13266231410953938 {1: 0.5337020916455084, 4: -0.11047636319671142, 7: -0.2658384717688309, 10: -0.1502538991657599} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW_State' Length=44 Min=17435 Max=29320 Mean=22006.522727272728 StdDev=3465.0342874378366 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW_State' Min=0.0 Max=1.0 Mean=0.3846464221516808 StdDev=0.2915468479123127 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [LinearTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_State_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.034 MAPE_Forecast=0.034 MAPE_Test=0.034 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0338 SMAPE_Forecast=0.0338 SMAPE_Test=0.0338 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.1808 MASE_Forecast=0.1808 MASE_Test=0.1808 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=776.7758610321686 CRPS_Forecast=776.7758610321686 CRPS_Test=776.7758610321686 -INFO:pyaf.std:MODEL_L1 L1_Fit=727.754839184349 L1_Forecast=727.754839184349 L1_Test=727.754839184349 -INFO:pyaf.std:MODEL_L2 L2_Fit=979.3716750912564 L2_Forecast=979.3716750912564 L2_Test=979.3716750912564 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.09448576246509134 LnQ_Forecast=0.09448576246509134 LnQ_Test=0.09448576246509134 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=577.9947491135517 MedAE_Forecast=577.9947491135517 MedAE_Test=577.9947491135517 -INFO:pyaf.std:MODEL_COMPLEXITY 5.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.5093259574486536, array([-0.2494486])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _NSW_State_LinearTrend_residue_Seasonal_MonthOfYear -0.08996174672038236 {1: 0.44511419540520747, 4: -0.1432149899690675, 7: -0.22987212475216134, 10: -0.07238460795406104} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Other_State' Length=44 Min=15384 Max=22284 Mean=18492.613636363636 StdDev=1596.0674287406462 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Other_State' Min=0.0 Max=1.0 Mean=0.45052371541501957 StdDev=0.23131412010734 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Other_State_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0503 MAPE_Forecast=0.0503 MAPE_Test=0.0503 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0494 SMAPE_Forecast=0.0494 SMAPE_Test=0.0494 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.4414 MASE_Forecast=0.4414 MASE_Test=0.4414 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=253.76579999999996 CRPS_Forecast=253.76579999999996 CRPS_Test=253.76579999999996 -INFO:pyaf.std:MODEL_L1 L1_Fit=907.9545454545455 L1_Forecast=907.9545454545455 L1_Test=907.9545454545455 -INFO:pyaf.std:MODEL_L2 L2_Fit=1240.6616819628584 L2_Forecast=1240.6616819628584 L2_Test=1240.6616819628584 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.2031466903810693 LnQ_Forecast=0.2031466903810693 LnQ_Test=0.2031466903810693 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=668.0 MedAE_Forecast=668.0 MedAE_Test=668.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Other_State_ConstantTrend 0.45052371541501957 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Other_State_ConstantTrend_residue_Seasonal_MonthOfYear 0.03230237154150217 {1: 0.15469367588932825, 4: -0.2292193675889326, 7: 0.041650197628458674, 10: 0.0683168642951254} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='QLD_State' Length=44 Min=14077 Max=23834 Mean=18606.363636363636 StdDev=2260.637169742889 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_QLD_State' Min=0.0 Max=1.0 Mean=0.4642168326702507 StdDev=0.23169387821491122 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_QLD_State_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0506 MAPE_Forecast=0.0506 MAPE_Test=0.0506 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0499 SMAPE_Forecast=0.0499 SMAPE_Test=0.0499 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.2822 MASE_Forecast=0.2822 MASE_Test=0.2822 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=502.5045142857143 CRPS_Forecast=502.5045142857143 CRPS_Test=502.5045142857143 -INFO:pyaf.std:MODEL_L1 L1_Fit=925.2272727272727 L1_Forecast=925.2272727272727 L1_Test=925.2272727272727 -INFO:pyaf.std:MODEL_L2 L2_Fit=1152.847206622882 L2_Forecast=1152.847206622882 L2_Test=1152.847206622882 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.17345869976483153 LnQ_Forecast=0.17345869976483153 LnQ_Test=0.17345869976483153 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=778.0 MedAE_Forecast=778.0 MedAE_Test=778.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _QLD_State_ConstantTrend 0.4642168326702507 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear -0.007929039291138279 {1: 0.04936316118031814, 4: -0.2511390423658539, 7: 0.2938030504905569, 10: -0.0608141474186365} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC_State' Length=44 Min=10190 Max=19131 Mean=13442.977272727272 StdDev=3041.391782844854 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC_State' Min=0.0 Max=1.0 Mean=0.36382700735122186 StdDev=0.3401623736544966 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_State_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0409 MAPE_Forecast=0.0409 MAPE_Test=0.0409 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0404 SMAPE_Forecast=0.0404 SMAPE_Test=0.0404 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.1362 MASE_Forecast=0.1362 MASE_Test=0.1362 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=658.2827714285714 CRPS_Forecast=658.2827714285714 CRPS_Test=658.2827714285714 -INFO:pyaf.std:MODEL_L1 L1_Fit=511.6136363636364 L1_Forecast=511.6136363636364 L1_Test=511.6136363636364 -INFO:pyaf.std:MODEL_L2 L2_Fit=688.3676178269336 L2_Forecast=688.3676178269336 L2_Test=688.3676178269336 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.13749652910455054 LnQ_Forecast=0.13749652910455054 LnQ_Test=0.13749652910455054 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=431.5 MedAE_Forecast=431.5 MedAE_Test=431.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _VIC_State_ConstantTrend 0.36382700735122186 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear -0.14237526817215912 {1: 0.5730928002765603, 4: -0.15814531626521358, 7: -0.27848979674838104, 10: -0.0950651238929957} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Australia' Length=44 Min=59635 Max=87012 Mean=72548.47727272728 StdDev=7891.683869424701 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Australia' Min=0.0 Max=1.0 Mean=0.4716907357536353 StdDev=0.28825962922981696 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Australia_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0314 MAPE_Forecast=0.0314 MAPE_Test=0.0314 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0308 SMAPE_Forecast=0.0308 SMAPE_Test=0.0308 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.2095 MASE_Forecast=0.2095 MASE_Test=0.2095 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=1666.5089142857146 CRPS_Forecast=1666.5089142857146 CRPS_Test=1666.5089142857146 -INFO:pyaf.std:MODEL_L1 L1_Fit=2171.068181818182 L1_Forecast=2171.068181818182 L1_Test=2171.068181818182 -INFO:pyaf.std:MODEL_L2 L2_Fit=2988.2555377830236 L2_Forecast=2988.2555377830236 L2_Test=2988.2555377830236 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.08333920740925044 LnQ_Forecast=0.08333920740925044 LnQ_Test=0.08333920740925044 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=1400.0 MedAE_Forecast=1400.0 MedAE_Test=1400.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Australia_ConstantTrend 0.4716907357536353 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Australia_ConstantTrend_residue_Seasonal_MonthOfYear -0.08154572351708636 {1: 0.4785594742766821, 4: -0.2073447518985745, 7: -0.07818523843837066, 10: -0.08490620859580206} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.timing:('OPERATION_START', ('PLOTTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia']})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 147.096, ('PLOTTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia']})) -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_PLOTTING') -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.964, 'HIERARCHICAL_PLOTTING') -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_FORECAST') -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Date_Normalized_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 4.299, ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU', 'TD', 'MO', 'OC'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD AHP_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_TOP_DOWN_METHOD PHA_TD -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_MIDDLE_OUT_METHOD MO -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD OC -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 4.413, 'HIERARCHICAL_FORECAST') -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_PLOTTING_AS_PNG') -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.278, 'HIERARCHICAL_PLOTTING_AS_PNG') -PLOT_PNG_DICT ('BrisbaneGC', 'Trend', '1db63ab6f2e35607a38e6e0a5b72ea24', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Cycle', 'f803286c0f3669d0a2b7ca404229a60e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'AR', 'a6f6350b38e631468d1db742a5a80f41', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Forecast', 'db3506194c8bf4556635b084c3ba737d', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Prediction_Intervals', 'fc8f1191eac7e31463443d8de84ed563', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Forecast_Quantiles', '64f61af52b17e65cf47d958c3f331674', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Trend', '78a9fb3159d4c4ace642034b74ae63bf', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Cycle', 'e3ed8c63445963a341ed908c983b84a6', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'AR', '518b93317ac3feab7f32f8c1f62e6072', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Forecast', '3bae58a928e948d6a98f259de10be5c6', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Prediction_Intervals', 'fab7219db2efb0b3d37f961bcd5624f3', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Forecast_Quantiles', '606187cac8d8704bdc98e9789cf2b156', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Trend', '3ad52abfa537168f68fe57b5dd97a45b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Cycle', 'f69b5d1c82f2a0280e41ef288e2ae13d', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'AR', '5c772be7703b88891f4b2b1a5fceee74', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Forecast', '54a5c38c56d66c7aee2517741f22427f', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Prediction_Intervals', '761256b57d835decb3c7f64855c5382b', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Forecast_Quantiles', 'ec2c9ef736b7cf8d38115275176c9686', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Trend', '0e42f5d23d33dcd1778993ade68bebb4', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Cycle', 'fa0f4c0c6440f17063f9be2907bb8841', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'AR', 'e4392bb1bcc0e3fc015410f47615e4aa', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Forecast', 'b34a4defb51f493d33c41abd7cfe2176', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Prediction_Intervals', '89d4b4de0768d23d1334df30157c1b78', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Forecast_Quantiles', '1fa4252e1595ae7f93276a11a9d9876d', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Trend', 'cfe579bed2e2337ffcbb6b85adf0cdce', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Cycle', '9574b1869370a1888bbac000ab368225', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'AR', '0637ba70efead7f42c591e990d2d1ccf', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Forecast', '99d4a06e220e33b1639b610a79bd3eee', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Prediction_Intervals', '0117558a4b8a1de04a888ba6c915187d', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Forecast_Quantiles', 'dccbf162573a8db8e93e85bfd85a22f0', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Trend', '5998b1f9dd3210c6ec4579ffdc031db3', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Cycle', '76158d6073448f4e551e9d3960c6a844', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'AR', '294cee0c8b29d0277ba1fb0bada253aa', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Forecast', 'bbf41df77adf1f8a81014050651a34bf', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Prediction_Intervals', 'df55dae023ddaf80cfcfc79403cb5e52', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Forecast_Quantiles', '860adeba4c311b823561a62f94e7302d', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Trend', '1c409f508aa350be756581c0bd8f5168', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Cycle', '0dc18e696cdbb1f66b438bbb0cb21939', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'AR', '945956d5a3ddc70eac1d3540042d0ab6', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Forecast', '4bfb21fd0d5096f4c3c86a1e3f6e7639', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Prediction_Intervals', '7bf476dcca65fb8e2150526adeef819b', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Forecast_Quantiles', '481a10239b6db0f9d9d5bc46de2d8324', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Trend', '0b50c78c2c43c9b4662be299eb34af1b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Cycle', 'e6efbb65b7f5bc77948c5ecadd2b3512', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'AR', 'f8eb424d8bb6213b5d31ffab448f7d9b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Forecast', 'bf31a9e12f9485aace6b933b5cdb8cea', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Prediction_Intervals', 'f2cb041408421d8a67bbb74b40c31a52', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Forecast_Quantiles', '845365d5fe871f4fc080d590c9d737b3', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Trend', '0a90d092c48698f8767a370b2b72451e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Cycle', 'b0c64d65878ce4ffa4b0ceef6bb087aa', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'AR', '9b833a0343304f7e0378df0438b21d89', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Forecast', '7e96d1304306eecb1ba22d536985a5db', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Prediction_Intervals', 'bc5b7aa5c398fa890367b8c0f665ca64', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Forecast_Quantiles', '9de5a0d82633ed89b2436aa56bb8f5da', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Trend', '79a804d3a125aa9698911f316ffa9a37', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Cycle', '219d32071b3ac55b18dc567a6e72bec5', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'AR', 'bdd44a3d53472baec69ede954e78f07e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Forecast', '8d36d7c7f9793e65f00e8535975d36ce', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Prediction_Intervals', '0646d7ca96a5e691094092df4677a0cf', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Forecast_Quantiles', '5736983cb0ba25b423c9c5bbce95e63e', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Trend', 'ad67065fd7e5a84bb7eba7195d202191', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Cycle', 'a1bfe5387f1d4125ff8762e754434e94', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'AR', '6533335db3e2633e039cc0d33bd91721', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Forecast', '2df3c210871976ee14f370663d24a894', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Prediction_Intervals', 'b0705adbe7f64a6bb139985bbd1f6631', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Forecast_Quantiles', '95a5fc7f79676a730466113dc3d5483d', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Trend', '7787c9c2400c42a3c2c3aa5aa8cc1929', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Cycle', 'ba9bc4c2c4bd44727e33c7d38e4cf782', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'AR', '192f660c140d6db9da20346edd99bceb', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Forecast', '3a4b30f541a6f968c4089a82b5b048eb', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Prediction_Intervals', 'c7f66841fd8eeeee09e25a729dd76236', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Forecast_Quantiles', 'c6764811a32e292646f42ece6a9dc16e', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Trend', '2071152f3d5ce2433feee181d96e4b8e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Cycle', '7e3ca5e46d17b91bec1b2fb286c20107', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'AR', '1a16adfc4fcfe987d85755f44f4cb591', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Forecast', '10423b6192de9151da9b40ef1fceef4b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Prediction_Intervals', '78fdf558df6ab04254b8cdfa851c5837', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Forecast_Quantiles', '8d50ba6d08d7fe8b7dbc1506b67fe27c', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Hierarchical_Structure', 'a7dd04985f90dc1dcbae8c145d165d48', 'iVBORw0KGgoAAAANSUhEUgAAA5kAAAbdCAIAAADdxRSsAAAABmJLR0QA/wD/AP+g') diff --git a/tests/references/plots/test_hierarchy_AU_plots.log b/tests/references/plots/test_hierarchy_AU_plots.log deleted file mode 100644 index eea662d67..000000000 --- a/tests/references/plots/test_hierarchy_AU_plots.log +++ /dev/null @@ -1,731 +0,0 @@ -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_TRAINING') -INFO:pyaf.timing:('OPERATION_START', ('SIGNAL_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', 'None', '_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) - City State Country -0 Sydney NSW_State Australia -1 NSW NSW_State Australia -2 Melbourne VIC_State Australia -3 VIC VIC_State Australia -4 BrisbaneGC QLD_State Australia -5 QLD QLD_State Australia -6 Capitals Other_State Australia -7 Other Other_State Australia -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': '_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'RelDiff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'Diff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': '_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'CumSum_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'RelDiff_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'Diff_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'CumSum_Capitals'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.301, ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'CumSum_Capitals'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.375, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': '_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': '_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.388, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'CumSum_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'Diff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.426, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'Diff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.435, ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'RelDiff_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'RelDiff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.549, ('TRAINING', {'Signal': 'Capitals', 'Transformation': 'Diff_Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'CumSum_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.574, ('TRAINING', {'Signal': 'Capitals', 'Transformation': '_Capitals'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.604, ('TRAINING', {'Signal': 'BrisbaneGC', 'Transformation': 'RelDiff_BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': '_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': 'Diff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': 'RelDiff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW', 'Transformation': 'CumSum_NSW'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.758, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': '_Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.735, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'Diff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': '_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': 'Diff_Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.69, ('TRAINING', {'Signal': 'NSW', 'Transformation': '_NSW'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.738, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'CumSum_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': 'RelDiff_Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.853, ('TRAINING', {'Signal': 'Melbourne', 'Transformation': 'RelDiff_Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other', 'Transformation': 'CumSum_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': '_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.709, ('TRAINING', {'Signal': 'NSW', 'Transformation': 'Diff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': 'Diff_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.636, ('TRAINING', {'Signal': 'NSW', 'Transformation': 'CumSum_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': 'RelDiff_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.853, ('TRAINING', {'Signal': 'NSW', 'Transformation': 'RelDiff_NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD', 'Transformation': 'CumSum_QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.636, ('TRAINING', {'Signal': 'Other', 'Transformation': '_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': '_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.76, ('TRAINING', {'Signal': 'Other', 'Transformation': 'Diff_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'Diff_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.56, ('TRAINING', {'Signal': 'QLD', 'Transformation': 'Diff_QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'RelDiff_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.702, ('TRAINING', {'Signal': 'Other', 'Transformation': 'CumSum_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'CumSum_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.7, ('TRAINING', {'Signal': 'QLD', 'Transformation': '_QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': '_VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.823, ('TRAINING', {'Signal': 'Other', 'Transformation': 'RelDiff_Other'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': 'Diff_VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.574, ('TRAINING', {'Signal': 'Sydney', 'Transformation': '_Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': 'RelDiff_VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.671, ('TRAINING', {'Signal': 'QLD', 'Transformation': 'CumSum_QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC', 'Transformation': 'CumSum_VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.835, ('TRAINING', {'Signal': 'QLD', 'Transformation': 'RelDiff_QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': '_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.695, ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'Diff_Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'Diff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.666, ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'CumSum_Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'RelDiff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.68, ('TRAINING', {'Signal': 'VIC', 'Transformation': '_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'CumSum_NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.794, ('TRAINING', {'Signal': 'Sydney', 'Transformation': 'RelDiff_Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.686, ('TRAINING', {'Signal': 'VIC', 'Transformation': 'Diff_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': '_Other_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'Diff_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.722, ('TRAINING', {'Signal': 'VIC', 'Transformation': 'CumSum_VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.691, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': '_NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'RelDiff_Other_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'CumSum_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.809, ('TRAINING', {'Signal': 'VIC', 'Transformation': 'RelDiff_VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': '_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.628, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'Diff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'Diff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.718, ('TRAINING', {'Signal': 'Other_State', 'Transformation': '_Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.733, ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'Diff_Other_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'RelDiff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.85, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'CumSum_NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'CumSum_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.928, ('TRAINING', {'Signal': 'NSW_State', 'Transformation': 'RelDiff_NSW_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': '_VIC_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'Diff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.826, ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'CumSum_Other_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'RelDiff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.993, ('TRAINING', {'Signal': 'Other_State', 'Transformation': 'RelDiff_Other_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'CumSum_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.969, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': '_QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': '_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.017, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'Diff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': 'Diff_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.861, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'CumSum_QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': 'RelDiff_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.014, ('TRAINING', {'Signal': 'QLD_State', 'Transformation': 'RelDiff_QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.876, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': '_VIC_State'})) -INFO:pyaf.timing:('OPERATION_START', ('TRAINING', {'Signal': 'Australia', 'Transformation': 'CumSum_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.846, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'Diff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.814, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'CumSum_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 1.024, ('TRAINING', {'Signal': 'VIC_State', 'Transformation': 'RelDiff_VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.847, ('TRAINING', {'Signal': 'Australia', 'Transformation': '_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.807, ('TRAINING', {'Signal': 'Australia', 'Transformation': 'Diff_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.653, ('TRAINING', {'Signal': 'Australia', 'Transformation': 'CumSum_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.882, ('TRAINING', {'Signal': 'Australia', 'Transformation': 'RelDiff_Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 6.607, ('SIGNAL_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', 'None', '_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', 'CumSum_', 'T+S+R')], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('FINALIZE_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]), ('Capitals', [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]), ('Melbourne', [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]), ('NSW', [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]), ('Other', [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]), ('QLD', [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]), ('Sydney', [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]), ('VIC', [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]), ('NSW_State', [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]), ('Other_State', [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]), ('QLD_State', [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]), ('VIC_State', [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]), ('Australia', [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')])], 'Cores': 8})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'BrisbaneGC', 'Transformations': [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': 'BrisbaneGC', 'Transformations': [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BrisbaneGC', 'Model': '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Capitals', 'Transformations': [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.012, ('MODEL_SELECTION', {'Signal': 'Capitals', 'Transformations': [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Capitals', 'Model': '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.042, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'BrisbaneGC', 'Model': '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Melbourne', 'Transformations': [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.041, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Capitals', 'Model': '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Capitals'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.015, ('MODEL_SELECTION', {'Signal': 'Melbourne', 'Transformations': [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Melbourne', 'Model': '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.049, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Melbourne', 'Model': '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Melbourne'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW', 'Transformations': [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.013, ('MODEL_SELECTION', {'Signal': 'NSW', 'Transformations': [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW', 'Model': '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Other', 'Transformations': [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.049, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW', 'Model': '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': 'Other', 'Transformations': [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other', 'Model': '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other', 'Model': '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'QLD', 'Transformations': [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.016, ('MODEL_SELECTION', {'Signal': 'QLD', 'Transformations': [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD', 'Model': '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.051, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD', 'Model': '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Sydney', 'Transformations': [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.02, ('MODEL_SELECTION', {'Signal': 'Sydney', 'Transformations': [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Sydney', 'Model': '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.425, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'BrisbaneGC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.05, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Sydney', 'Model': '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Sydney'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.439, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Capitals'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC', 'Transformations': [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.014, ('MODEL_SELECTION', {'Signal': 'VIC', 'Transformations': [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC', 'Model': '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.047, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC', 'Model': '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.554, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Melbourne'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.473, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.527, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'NSW_State', 'Transformations': [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'NSW_State', 'Transformations': [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_State', 'Model': '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.546, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.044, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'NSW_State', 'Model': '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.5, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Sydney'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Other_State', 'Transformations': [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'Other_State', 'Transformations': [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other_State', 'Model': '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Other_State', 'Model': '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.543, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'QLD_State', 'Transformations': [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.497, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'NSW_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.008, ('MODEL_SELECTION', {'Signal': 'QLD_State', 'Transformations': [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD_State', 'Model': '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.039, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'QLD_State', 'Model': '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD_State'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'VIC_State', 'Transformations': [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'VIC_State', 'Transformations': [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_State', 'Model': '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.481, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Other_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'VIC_State', 'Model': '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_State'})) -INFO:pyaf.timing:('OPERATION_START', ('MODEL_SELECTION', {'Signal': 'Australia', 'Transformations': [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.009, ('MODEL_SELECTION', {'Signal': 'Australia', 'Transformations': [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')]})) -INFO:pyaf.timing:('OPERATION_START', ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Australia', 'Model': '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.043, ('UPDATE_BEST_MODEL_PERFS', {'Signal': 'Australia', 'Model': '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR'})) -INFO:pyaf.timing:('OPERATION_START', ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.437, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'QLD_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.464, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'VIC_State'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.448, ('COMPUTE_PREDICTION_INTERVALS', {'Signal': 'Australia'})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 3.056, ('FINALIZE_TRAINING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Transformations': [('BrisbaneGC', [('BrisbaneGC', 'None', 'CumSum_', 'T+S+R'), ('BrisbaneGC', 'None', 'Diff_', 'T+S+R'), ('BrisbaneGC', 'None', 'RelDiff_', 'T+S+R'), ('BrisbaneGC', 'None', '_', 'T+S+R')]), ('Capitals', [('Capitals', 'None', 'CumSum_', 'T+S+R'), ('Capitals', 'None', 'Diff_', 'T+S+R'), ('Capitals', 'None', 'RelDiff_', 'T+S+R'), ('Capitals', 'None', '_', 'T+S+R')]), ('Melbourne', [('Melbourne', 'None', 'CumSum_', 'T+S+R'), ('Melbourne', 'None', 'Diff_', 'T+S+R'), ('Melbourne', 'None', 'RelDiff_', 'T+S+R'), ('Melbourne', 'None', '_', 'T+S+R')]), ('NSW', [('NSW', 'None', 'CumSum_', 'T+S+R'), ('NSW', 'None', 'Diff_', 'T+S+R'), ('NSW', 'None', 'RelDiff_', 'T+S+R'), ('NSW', 'None', '_', 'T+S+R')]), ('Other', [('Other', 'None', 'CumSum_', 'T+S+R'), ('Other', 'None', 'Diff_', 'T+S+R'), ('Other', 'None', 'RelDiff_', 'T+S+R'), ('Other', 'None', '_', 'T+S+R')]), ('QLD', [('QLD', 'None', 'CumSum_', 'T+S+R'), ('QLD', 'None', 'Diff_', 'T+S+R'), ('QLD', 'None', 'RelDiff_', 'T+S+R'), ('QLD', 'None', '_', 'T+S+R')]), ('Sydney', [('Sydney', 'None', 'CumSum_', 'T+S+R'), ('Sydney', 'None', 'Diff_', 'T+S+R'), ('Sydney', 'None', 'RelDiff_', 'T+S+R'), ('Sydney', 'None', '_', 'T+S+R')]), ('VIC', [('VIC', 'None', 'CumSum_', 'T+S+R'), ('VIC', 'None', 'Diff_', 'T+S+R'), ('VIC', 'None', 'RelDiff_', 'T+S+R'), ('VIC', 'None', '_', 'T+S+R')]), ('NSW_State', [('NSW_State', 'None', 'CumSum_', 'T+S+R'), ('NSW_State', 'None', 'Diff_', 'T+S+R'), ('NSW_State', 'None', 'RelDiff_', 'T+S+R'), ('NSW_State', 'None', '_', 'T+S+R')]), ('Other_State', [('Other_State', 'None', 'CumSum_', 'T+S+R'), ('Other_State', 'None', 'Diff_', 'T+S+R'), ('Other_State', 'None', 'RelDiff_', 'T+S+R'), ('Other_State', 'None', '_', 'T+S+R')]), ('QLD_State', [('QLD_State', 'None', 'CumSum_', 'T+S+R'), ('QLD_State', 'None', 'Diff_', 'T+S+R'), ('QLD_State', 'None', 'RelDiff_', 'T+S+R'), ('QLD_State', 'None', '_', 'T+S+R')]), ('VIC_State', [('VIC_State', 'None', 'CumSum_', 'T+S+R'), ('VIC_State', 'None', 'Diff_', 'T+S+R'), ('VIC_State', 'None', 'RelDiff_', 'T+S+R'), ('VIC_State', 'None', '_', 'T+S+R')]), ('Australia', [('Australia', 'None', 'CumSum_', 'T+S+R'), ('Australia', 'None', 'Diff_', 'T+S+R'), ('Australia', 'None', 'RelDiff_', 'T+S+R'), ('Australia', 'None', '_', 'T+S+R')])], 'Cores': 8})) -INFO:pyaf.hierarchical:TRAINING_HIERARCHICAL_MODEL_COMPUTE_TOP_DOWN_HISTORICAL_PROPORTIONS -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Date_Normalized_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 2.044, ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_OPTIMAL_COMBINATION_METHOD -INFO:pyaf.hierarchical:STRUCTURE [0, 1, 2] -INFO:pyaf.hierarchical:DATASET_COLUMNS Index(['Date', 'BrisbaneGC', 'BrisbaneGC_Forecast', - 'BrisbaneGC_Forecast_Lower_Bound', 'BrisbaneGC_Forecast_Upper_Bound', - 'Capitals', 'Capitals_Forecast', 'Capitals_Forecast_Lower_Bound', - 'Capitals_Forecast_Upper_Bound', 'Melbourne', 'Melbourne_Forecast', - 'Melbourne_Forecast_Lower_Bound', 'Melbourne_Forecast_Upper_Bound', - 'NSW', 'NSW_Forecast', 'NSW_Forecast_Lower_Bound', - 'NSW_Forecast_Upper_Bound', 'Other', 'Other_Forecast', - 'Other_Forecast_Lower_Bound', 'Other_Forecast_Upper_Bound', 'QLD', - 'QLD_Forecast', 'QLD_Forecast_Lower_Bound', 'QLD_Forecast_Upper_Bound', - 'Sydney', 'Sydney_Forecast', 'Sydney_Forecast_Lower_Bound', - 'Sydney_Forecast_Upper_Bound', 'VIC', 'VIC_Forecast', - 'VIC_Forecast_Lower_Bound', 'VIC_Forecast_Upper_Bound', 'NSW_State', - 'NSW_State_Forecast', 'NSW_State_Forecast_Lower_Bound', - 'NSW_State_Forecast_Upper_Bound', 'Other_State', 'Other_State_Forecast', - 'Other_State_Forecast_Lower_Bound', 'Other_State_Forecast_Upper_Bound', - 'QLD_State', 'QLD_State_Forecast', 'QLD_State_Forecast_Lower_Bound', - 'QLD_State_Forecast_Upper_Bound', 'VIC_State', 'VIC_State_Forecast', - 'VIC_State_Forecast_Lower_Bound', 'VIC_State_Forecast_Upper_Bound', - 'Australia', 'Australia_Forecast', 'Australia_Forecast_Lower_Bound', - 'Australia_Forecast_Upper_Bound', 'BrisbaneGC_BU_Forecast', - 'Capitals_BU_Forecast', 'Melbourne_BU_Forecast', 'NSW_BU_Forecast', - 'Other_BU_Forecast', 'QLD_BU_Forecast', 'Sydney_BU_Forecast', - 'VIC_BU_Forecast', 'NSW_State_BU_Forecast', 'Other_State_BU_Forecast', - 'QLD_State_BU_Forecast', 'VIC_State_BU_Forecast', - 'Australia_BU_Forecast'], - dtype='object') -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (0, ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (1, ['NSW_State', 'Other_State', 'QLD_State', 'VIC_State']) -INFO:pyaf.hierarchical:STRUCTURE_LEVEL (2, ['Australia']) -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Australia_BU_Forecast', 'Length': 44, 'MAPE': 0.0307, 'RMSE': 2649.2533389732457, 'MAE': 2160.6711851064942, 'SMAPE': 0.0305, 'ErrorMean': 39.73315164422043, 'ErrorStdDev': 2648.955365936034, 'R2': 0.8873042283973063, 'Pearson': 0.9420309611478157, 'MedAE': 1775.441518085714, 'LnQ': 0.06338420663612786} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Australia_BU_Forecast', 'Length': 44, 'MAPE': 0.0307, 'RMSE': 2649.2533389732457, 'MAE': 2160.6711851064942, 'SMAPE': 0.0305, 'ErrorMean': 39.73315164422043, 'ErrorStdDev': 2648.955365936034, 'R2': 0.8873042283973063, 'Pearson': 0.9420309611478157, 'MedAE': 1775.441518085714, 'LnQ': 0.06338420663612786} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'BrisbaneGC_BU_Forecast', 'Length': 44, 'MAPE': 0.059, 'RMSE': 614.1944650589835, 'MAE': 440.84090909090907, 'SMAPE': 0.0568, 'ErrorMean': 129.52272727272728, 'ErrorStdDev': 600.3821316702602, 'R2': 0.5848124808738524, 'Pearson': 0.7767112806615456, 'MedAE': 353.0, 'LnQ': 0.2888940646786469} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'BrisbaneGC_BU_Forecast', 'Length': 44, 'MAPE': 0.059, 'RMSE': 614.1944650589835, 'MAE': 440.84090909090907, 'SMAPE': 0.0568, 'ErrorMean': 129.52272727272728, 'ErrorStdDev': 600.3821316702602, 'R2': 0.5848124808738524, 'Pearson': 0.7767112806615456, 'MedAE': 353.0, 'LnQ': 0.2888940646786469} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Capitals_BU_Forecast', 'Length': 44, 'MAPE': 0.0577, 'RMSE': 608.1757558469427, 'MAE': 460.8863636363636, 'SMAPE': 0.0582, 'ErrorMean': -66.79545454545455, 'ErrorStdDev': 604.4965816711176, 'R2': 0.5328349460551864, 'Pearson': 0.7348640156077884, 'MedAE': 322.5, 'LnQ': 0.24876891335532347} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Capitals_BU_Forecast', 'Length': 44, 'MAPE': 0.0577, 'RMSE': 608.1757558469427, 'MAE': 460.8863636363636, 'SMAPE': 0.0582, 'ErrorMean': -66.79545454545455, 'ErrorStdDev': 604.4965816711176, 'R2': 0.5328349460551864, 'Pearson': 0.7348640156077884, 'MedAE': 322.5, 'LnQ': 0.24876891335532347} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Melbourne_BU_Forecast', 'Length': 44, 'MAPE': 0.0737, 'RMSE': 434.35490306681453, 'MAE': 348.45454545454544, 'SMAPE': 0.0743, 'ErrorMean': -59.22727272727273, 'ErrorStdDev': 430.29793397536906, 'R2': 0.4015155887084072, 'Pearson': 0.6562149335446998, 'MedAE': 327.0, 'LnQ': 0.3758072346191974} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Melbourne_BU_Forecast', 'Length': 44, 'MAPE': 0.0737, 'RMSE': 434.35490306681453, 'MAE': 348.45454545454544, 'SMAPE': 0.0743, 'ErrorMean': -59.22727272727273, 'ErrorStdDev': 430.29793397536906, 'R2': 0.4015155887084072, 'Pearson': 0.6562149335446998, 'MedAE': 327.0, 'LnQ': 0.3758072346191974} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_BU_Forecast', 'Length': 44, 'MAPE': 0.0465, 'RMSE': 987.8115734012507, 'MAE': 718.0681818181819, 'SMAPE': 0.046, 'ErrorMean': 73.47727272727273, 'ErrorStdDev': 985.0750199543263, 'R2': 0.8925743901564223, 'Pearson': 0.9451029550194883, 'MedAE': 503.0, 'LnQ': 0.1852592908864313} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_BU_Forecast', 'Length': 44, 'MAPE': 0.0465, 'RMSE': 987.8115734012507, 'MAE': 718.0681818181819, 'SMAPE': 0.046, 'ErrorMean': 73.47727272727273, 'ErrorStdDev': 985.0750199543263, 'R2': 0.8925743901564223, 'Pearson': 0.9451029550194883, 'MedAE': 503.0, 'LnQ': 0.1852592908864313} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'NSW_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0408, 'RMSE': 1144.1632267718874, 'MAE': 864.2155932819362, 'SMAPE': 0.0407, 'ErrorMean': -52.84151316113019, 'ErrorStdDev': 1142.942371243581, 'R2': 0.8909662627803003, 'Pearson': 0.9444143200613909, 'MedAE': 628.8886728467824, 'LnQ': 0.13342271146416468} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'NSW_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0408, 'RMSE': 1144.1632267718874, 'MAE': 864.2155932819362, 'SMAPE': 0.0407, 'ErrorMean': -52.84151316113019, 'ErrorStdDev': 1142.942371243581, 'R2': 0.8909662627803003, 'Pearson': 0.9444143200613909, 'MedAE': 628.8886728467824, 'LnQ': 0.13342271146416468} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_BU_Forecast', 'Length': 44, 'MAPE': 0.0692, 'RMSE': 955.3693835846474, 'MAE': 721.9318181818181, 'SMAPE': 0.0676, 'ErrorMean': 59.93181818181818, 'ErrorStdDev': 953.4877221340245, 'R2': 0.29570938060484053, 'Pearson': 0.5464561094756151, 'MedAE': 666.5, 'LnQ': 0.3582189938843262} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_BU_Forecast', 'Length': 44, 'MAPE': 0.0692, 'RMSE': 955.3693835846474, 'MAE': 721.9318181818181, 'SMAPE': 0.0676, 'ErrorMean': 59.93181818181818, 'ErrorStdDev': 953.4877221340245, 'R2': 0.29570938060484053, 'Pearson': 0.5464561094756151, 'MedAE': 666.5, 'LnQ': 0.3582189938843262} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Other_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0515, 'RMSE': 1194.0341094564487, 'MAE': 937.5909090909091, 'SMAPE': 0.051, 'ErrorMean': -6.863636363636363, 'ErrorStdDev': 1194.014382258992, 'R2': 0.440331329148694, 'Pearson': 0.6638984782397178, 'MedAE': 754.0, 'LnQ': 0.18749015564019203} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Other_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0515, 'RMSE': 1194.0341094564487, 'MAE': 937.5909090909091, 'SMAPE': 0.051, 'ErrorMean': -6.863636363636363, 'ErrorStdDev': 1194.014382258992, 'R2': 0.440331329148694, 'Pearson': 0.6638984782397178, 'MedAE': 754.0, 'LnQ': 0.18749015564019203} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_BU_Forecast', 'Length': 44, 'MAPE': 0.0654, 'RMSE': 907.8588822058194, 'MAE': 701.2954545454545, 'SMAPE': 0.065, 'ErrorMean': -37.38636363636363, 'ErrorStdDev': 907.0887552020748, 'R2': 0.7511816244233342, 'Pearson': 0.8674625497115258, 'MedAE': 570.5, 'LnQ': 0.3104085461761201} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_BU_Forecast', 'Length': 44, 'MAPE': 0.0654, 'RMSE': 907.8588822058194, 'MAE': 701.2954545454545, 'SMAPE': 0.065, 'ErrorMean': -37.38636363636363, 'ErrorStdDev': 907.0887552020748, 'R2': 0.7511816244233342, 'Pearson': 0.8674625497115258, 'MedAE': 570.5, 'LnQ': 0.3104085461761201} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'QLD_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0512, 'RMSE': 1153.4137080068808, 'MAE': 934.5909090909091, 'SMAPE': 0.0504, 'ErrorMean': 92.13636363636364, 'ErrorStdDev': 1149.727825319562, 'R2': 0.7396794284983607, 'Pearson': 0.8613958375031755, 'MedAE': 787.5, 'LnQ': 0.17390807623776244} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'QLD_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0512, 'RMSE': 1153.4137080068808, 'MAE': 934.5909090909091, 'SMAPE': 0.0504, 'ErrorMean': 92.13636363636364, 'ErrorStdDev': 1149.727825319562, 'R2': 0.7396794284983607, 'Pearson': 0.8613958375031755, 'MedAE': 787.5, 'LnQ': 0.17390807623776244} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'Sydney_BU_Forecast', 'Length': 44, 'MAPE': 0.0607, 'RMSE': 558.1781992520187, 'MAE': 370.61340163762037, 'SMAPE': 0.0622, 'ErrorMean': -126.31878588840276, 'ErrorStdDev': 543.6970355371695, 'R2': 0.47258489255630043, 'Pearson': 0.7104826236354816, 'MedAE': 250.3304272839987, 'LnQ': 0.3485078512843014} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'Sydney_BU_Forecast', 'Length': 44, 'MAPE': 0.0607, 'RMSE': 558.1781992520187, 'MAE': 370.61340163762037, 'SMAPE': 0.0622, 'ErrorMean': -126.31878588840276, 'ErrorStdDev': 543.6970355371695, 'R2': 0.47258489255630043, 'Pearson': 0.7104826236354816, 'MedAE': 250.3304272839987, 'LnQ': 0.3485078512843014} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_BU_Forecast', 'Length': 44, 'MAPE': 0.0516, 'RMSE': 530.0781460398937, 'MAE': 424.20454545454544, 'SMAPE': 0.0511, 'ErrorMean': 14.75, 'ErrorStdDev': 529.8728889168523, 'R2': 0.9608523426800629, 'Pearson': 0.9803775115824175, 'MedAE': 365.5, 'LnQ': 0.18156516923566438} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_BU_Forecast', 'Length': 44, 'MAPE': 0.0516, 'RMSE': 530.0781460398937, 'MAE': 424.20454545454544, 'SMAPE': 0.0511, 'ErrorMean': 14.75, 'ErrorStdDev': 529.8728889168523, 'R2': 0.9608523426800629, 'Pearson': 0.9803775115824175, 'MedAE': 365.5, 'LnQ': 0.18156516923566438} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_FIT_PERF {'Signal': 'VIC_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0417, 'RMSE': 680.2621653718246, 'MAE': 527.4772727272727, 'SMAPE': 0.0417, 'ErrorMean': -44.47727272727273, 'ErrorStdDev': 678.8065894252261, 'R2': 0.9499726039950437, 'Pearson': 0.9748137776870249, 'MedAE': 416.5, 'LnQ': 0.13268137123942822} -INFO:pyaf.hierarchical:REPORT_COMBINED_FORECASTS_VALID_PERF {'Signal': 'VIC_State_BU_Forecast', 'Length': 44, 'MAPE': 0.0417, 'RMSE': 680.2621653718246, 'MAE': 527.4772727272727, 'SMAPE': 0.0417, 'ErrorMean': -44.47727272727273, 'ErrorStdDev': 678.8065894252261, 'R2': 0.9499726039950437, 'Pearson': 0.9748137776870249, 'MedAE': 416.5, 'LnQ': 0.13268137123942822} -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 12.125, 'HIERARCHICAL_TRAINING') -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='BrisbaneGC' Length=44 Min=5616 Max=9970 Mean=7945.977272727273 StdDev=953.1993850529327 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_BrisbaneGC' Min=0.0 Max=1.0 Mean=0.5351348811959743 StdDev=0.2189249850833562 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_BrisbaneGC_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.059 MAPE_Forecast=0.059 MAPE_Test=0.059 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0568 SMAPE_Forecast=0.0568 SMAPE_Test=0.0568 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.3197 MASE_Forecast=0.3197 MASE_Test=0.3197 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=197.67945714285716 CRPS_Forecast=197.67945714285716 CRPS_Test=197.67945714285716 -INFO:pyaf.std:MODEL_L1 L1_Fit=440.84090909090907 L1_Forecast=440.84090909090907 L1_Test=440.84090909090907 -INFO:pyaf.std:MODEL_L2 L2_Fit=614.1944650589835 L2_Forecast=614.1944650589835 L2_Test=614.1944650589835 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.2888940646786469 LnQ_Forecast=0.2888940646786469 LnQ_Test=0.2888940646786469 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=353.0 MedAE_Forecast=353.0 MedAE_Test=353.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _BrisbaneGC_ConstantTrend 0.5351348811959743 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _BrisbaneGC_ConstantTrend_residue_Seasonal_MonthOfYear 0.06201716290140741 {1: 0.26206309767403024, 4: -0.21336179897273133, 7: 0.07464922537269814, 10: -0.004358583538647709} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Capitals' Length=44 Min=6362 Max=10484 Mean=7836.545454545455 StdDev=889.8031307936874 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Capitals' Min=0.0 Max=1.0 Mean=0.35772572890476817 StdDev=0.21586684395771172 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Capitals_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Capitals_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0577 MAPE_Forecast=0.0577 MAPE_Test=0.0577 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0582 SMAPE_Forecast=0.0582 SMAPE_Test=0.0582 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.4024 MASE_Forecast=0.4024 MASE_Test=0.4024 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=172.35505714285713 CRPS_Forecast=172.35505714285713 CRPS_Test=172.35505714285713 -INFO:pyaf.std:MODEL_L1 L1_Fit=460.8863636363636 L1_Forecast=460.8863636363636 L1_Test=460.8863636363636 -INFO:pyaf.std:MODEL_L2 L2_Fit=608.1757558469427 L2_Forecast=608.1757558469427 L2_Test=608.1757558469427 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.24876891335532347 LnQ_Forecast=0.24876891335532347 LnQ_Test=0.24876891335532347 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=322.5 MedAE_Forecast=322.5 MedAE_Test=322.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Capitals_ConstantTrend 0.35772572890476817 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Capitals_ConstantTrend_residue_Seasonal_MonthOfYear -0.026454501345331005 {1: 0.2645450134533104, 4: -0.15636716510078952, 7: -0.04525605398967841, 10: -0.12774028494552508} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Melbourne' Length=44 Min=3825 Max=5724 Mean=4728.227272727273 StdDev=561.459334868291 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Melbourne' Min=0.0 Max=1.0 Mean=0.47563310833453004 StdDev=0.2956605238906219 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Melbourne_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0737 MAPE_Forecast=0.0737 MAPE_Test=0.0737 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0743 SMAPE_Forecast=0.0743 SMAPE_Test=0.0743 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.5573 MASE_Forecast=0.5573 MASE_Test=0.5573 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=114.0804857142857 CRPS_Forecast=114.0804857142857 CRPS_Test=114.0804857142857 -INFO:pyaf.std:MODEL_L1 L1_Fit=348.45454545454544 L1_Forecast=348.45454545454544 L1_Test=348.45454545454544 -INFO:pyaf.std:MODEL_L2 L2_Fit=434.35490306681453 L2_Forecast=434.35490306681453 L2_Test=434.35490306681453 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3758072346191974 LnQ_Forecast=0.3758072346191974 LnQ_Test=0.3758072346191974 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=327.0 MedAE_Forecast=327.0 MedAE_Test=327.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Melbourne_ConstantTrend 0.47563310833453004 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Melbourne_ConstantTrend_residue_Seasonal_MonthOfYear -0.01407439322131257 {1: 0.3421657331609939, 4: -0.2634161520417444, 7: -0.18863995404279754, 10: -0.014864282636794401} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW' Length=44 Min=12216 Max=22718 Mean=16128.272727272728 StdDev=3013.840025340945 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW' Min=0.0 Max=1.0 Mean=0.3725264451792732 StdDev=0.2869777209427676 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0465 MAPE_Forecast=0.0465 MAPE_Test=0.0465 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.046 SMAPE_Forecast=0.046 SMAPE_Test=0.046 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.2009 MASE_Forecast=0.2009 MASE_Test=0.2009 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=634.8099142857144 CRPS_Forecast=634.8099142857144 CRPS_Test=634.8099142857144 -INFO:pyaf.std:MODEL_L1 L1_Fit=718.0681818181819 L1_Forecast=718.0681818181819 L1_Test=718.0681818181819 -INFO:pyaf.std:MODEL_L2 L2_Fit=987.8115734012507 L2_Forecast=987.8115734012507 L2_Test=987.8115734012507 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.1852592908864313 LnQ_Forecast=0.1852592908864313 LnQ_Test=0.1852592908864313 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=503.0 MedAE_Forecast=503.0 MedAE_Test=503.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _NSW_ConstantTrend 0.3725264451792732 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _NSW_ConstantTrend_residue_Seasonal_MonthOfYear -0.12419279444607952 {1: 0.46483786638042973, 4: -0.13771402849673653, 7: -0.2211267117951559, 10: -0.07801111476601857} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Other' Length=44 Min=8281 Max=13098 Mean=10656.068181818182 StdDev=1138.4012592971872 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Other' Min=0.0 Max=1.0 Mean=0.4930596183969653 StdDev=0.23632992719476584 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Other_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Other_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Other_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0692 MAPE_Forecast=0.0692 MAPE_Test=0.0692 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0676 SMAPE_Forecast=0.0676 SMAPE_Test=0.0676 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.5248 MASE_Forecast=0.5248 MASE_Test=0.5248 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=169.26605714285716 CRPS_Forecast=169.26605714285716 CRPS_Test=169.26605714285716 -INFO:pyaf.std:MODEL_L1 L1_Fit=721.9318181818181 L1_Forecast=721.9318181818181 L1_Test=721.9318181818181 -INFO:pyaf.std:MODEL_L2 L2_Fit=955.3693835846474 L2_Forecast=955.3693835846474 L2_Test=955.3693835846474 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3582189938843262 LnQ_Forecast=0.3582189938843262 LnQ_Test=0.3582189938843262 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=666.5 MedAE_Forecast=666.5 MedAE_Test=666.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Other_ConstantTrend 0.4930596183969653 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Other_ConstantTrend_residue_Seasonal_MonthOfYear 0.012649329080717864 {1: 0.06371845924472042, 4: -0.20366788080095122, 7: 0.11727876648989366, 10: 0.07243757902881831} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='QLD' Length=44 Min=7600 Max=15078 Mean=10660.386363636364 StdDev=1820.0240285115756 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_QLD' Min=0.0 Max=1.0 Mean=0.40925198764861787 StdDev=0.24338379627060383 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_QLD_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_QLD_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0654 MAPE_Forecast=0.0654 MAPE_Test=0.0654 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.065 SMAPE_Forecast=0.065 SMAPE_Test=0.065 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.299 MASE_Forecast=0.299 MASE_Test=0.299 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=368.35511428571425 CRPS_Forecast=368.35511428571425 CRPS_Test=368.35511428571425 -INFO:pyaf.std:MODEL_L1 L1_Fit=701.2954545454545 L1_Forecast=701.2954545454545 L1_Test=701.2954545454545 -INFO:pyaf.std:MODEL_L2 L2_Fit=907.8588822058194 L2_Forecast=907.8588822058194 L2_Test=907.8588822058194 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3104085461761201 LnQ_Forecast=0.3104085461761201 LnQ_Test=0.3104085461761201 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=570.5 MedAE_Forecast=570.5 MedAE_Test=570.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _QLD_ConstantTrend 0.40925198764861787 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _QLD_ConstantTrend_residue_Seasonal_MonthOfYear -0.07727819786525333 {1: -0.09967723504096876, 4: -0.20050633373045793, 7: 0.33626820491623904, 10: -0.05608269104524799} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Sydney' Length=44 Min=4491 Max=8426 Mean=5878.25 StdDev=768.5932877962535 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Sydney' Min=0.0 Max=1.0 Mean=0.3525412960609912 StdDev=0.19532230947808218 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [LinearTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Sydney_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Sydney_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0607 MAPE_Forecast=0.0607 MAPE_Test=0.0607 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0622 SMAPE_Forecast=0.0622 SMAPE_Test=0.0622 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.5732 MASE_Forecast=0.5732 MASE_Test=0.5732 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=131.84690100287588 CRPS_Forecast=131.84690100287588 CRPS_Test=131.84690100287588 -INFO:pyaf.std:MODEL_L1 L1_Fit=370.61340163762037 L1_Forecast=370.61340163762037 L1_Test=370.61340163762037 -INFO:pyaf.std:MODEL_L2 L2_Fit=558.1781992520187 L2_Forecast=558.1781992520187 L2_Test=558.1781992520187 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.3485078512843014 LnQ_Forecast=0.3485078512843014 LnQ_Test=0.3485078512843014 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=250.3304272839987 MedAE_Forecast=250.3304272839987 MedAE_Test=250.3304272839987 -INFO:pyaf.std:MODEL_COMPLEXITY 5.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.4965048948710057, array([-0.28803058])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Sydney_LinearTrend_residue_Seasonal_MonthOfYear -0.019296089718327747 {1: 0.09021539163904402, 4: -0.08670314467623061, 7: -0.1402640468526624, 10: 0.008346426686898223} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC' Length=44 Min=5800 Max=14071 Mean=8714.75 StdDev=2679.088193982491 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC' Min=0.0 Max=1.0 Mean=0.35240599685648655 StdDev=0.32391345592824217 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0516 MAPE_Forecast=0.0516 MAPE_Test=0.0516 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0511 SMAPE_Forecast=0.0511 SMAPE_Test=0.0511 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.1283 MASE_Forecast=0.1283 MASE_Test=0.1283 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=572.6305428571429 CRPS_Forecast=572.6305428571429 CRPS_Test=572.6305428571429 -INFO:pyaf.std:MODEL_L1 L1_Fit=424.20454545454544 L1_Forecast=424.20454545454544 L1_Test=424.20454545454544 -INFO:pyaf.std:MODEL_L2 L2_Fit=530.0781460398937 L2_Forecast=530.0781460398937 L2_Test=530.0781460398937 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.18156516923566438 LnQ_Forecast=0.18156516923566438 LnQ_Test=0.18156516923566438 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=365.5 MedAE_Forecast=365.5 MedAE_Test=365.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _VIC_ConstantTrend 0.35240599685648655 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _VIC_ConstantTrend_residue_Seasonal_MonthOfYear -0.13266231410953938 {1: 0.5337020916455084, 4: -0.11047636319671142, 7: -0.2658384717688309, 10: -0.1502538991657599} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='NSW_State' Length=44 Min=17435 Max=29320 Mean=22006.522727272728 StdDev=3465.0342874378366 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_NSW_State' Min=0.0 Max=1.0 Mean=0.3846464221516808 StdDev=0.2915468479123127 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [LinearTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_NSW_State_LinearTrend' [LinearTrend] -INFO:pyaf.std:CYCLE_DETAIL '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_NSW_State_LinearTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.034 MAPE_Forecast=0.034 MAPE_Test=0.034 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0338 SMAPE_Forecast=0.0338 SMAPE_Test=0.0338 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.1808 MASE_Forecast=0.1808 MASE_Test=0.1808 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=776.7758610321686 CRPS_Forecast=776.7758610321686 CRPS_Test=776.7758610321686 -INFO:pyaf.std:MODEL_L1 L1_Fit=727.754839184349 L1_Forecast=727.754839184349 L1_Test=727.754839184349 -INFO:pyaf.std:MODEL_L2 L2_Fit=979.3716750912564 L2_Forecast=979.3716750912564 L2_Test=979.3716750912564 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.09448576246509134 LnQ_Forecast=0.09448576246509134 LnQ_Test=0.09448576246509134 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=577.9947491135517 MedAE_Forecast=577.9947491135517 MedAE_Test=577.9947491135517 -INFO:pyaf.std:MODEL_COMPLEXITY 5.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:LINEAR_RIDGE_TREND LinearTrend (0.5093259574486536, array([-0.2494486])) -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _NSW_State_LinearTrend_residue_Seasonal_MonthOfYear -0.08996174672038236 {1: 0.44511419540520747, 4: -0.1432149899690675, 7: -0.22987212475216134, 10: -0.07238460795406104} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Other_State' Length=44 Min=15384 Max=22284 Mean=18492.613636363636 StdDev=1596.0674287406462 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Other_State' Min=0.0 Max=1.0 Mean=0.45052371541501957 StdDev=0.23131412010734 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Other_State_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Other_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0503 MAPE_Forecast=0.0503 MAPE_Test=0.0503 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0494 SMAPE_Forecast=0.0494 SMAPE_Test=0.0494 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.4414 MASE_Forecast=0.4414 MASE_Test=0.4414 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=253.76579999999996 CRPS_Forecast=253.76579999999996 CRPS_Test=253.76579999999996 -INFO:pyaf.std:MODEL_L1 L1_Fit=907.9545454545455 L1_Forecast=907.9545454545455 L1_Test=907.9545454545455 -INFO:pyaf.std:MODEL_L2 L2_Fit=1240.6616819628584 L2_Forecast=1240.6616819628584 L2_Test=1240.6616819628584 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.2031466903810693 LnQ_Forecast=0.2031466903810693 LnQ_Test=0.2031466903810693 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=668.0 MedAE_Forecast=668.0 MedAE_Test=668.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Other_State_ConstantTrend 0.45052371541501957 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Other_State_ConstantTrend_residue_Seasonal_MonthOfYear 0.03230237154150217 {1: 0.15469367588932825, 4: -0.2292193675889326, 7: 0.041650197628458674, 10: 0.0683168642951254} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='QLD_State' Length=44 Min=14077 Max=23834 Mean=18606.363636363636 StdDev=2260.637169742889 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_QLD_State' Min=0.0 Max=1.0 Mean=0.4642168326702507 StdDev=0.23169387821491122 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_QLD_State_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0506 MAPE_Forecast=0.0506 MAPE_Test=0.0506 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0499 SMAPE_Forecast=0.0499 SMAPE_Test=0.0499 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.2822 MASE_Forecast=0.2822 MASE_Test=0.2822 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=502.5045142857143 CRPS_Forecast=502.5045142857143 CRPS_Test=502.5045142857143 -INFO:pyaf.std:MODEL_L1 L1_Fit=925.2272727272727 L1_Forecast=925.2272727272727 L1_Test=925.2272727272727 -INFO:pyaf.std:MODEL_L2 L2_Fit=1152.847206622882 L2_Forecast=1152.847206622882 L2_Test=1152.847206622882 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.17345869976483153 LnQ_Forecast=0.17345869976483153 LnQ_Test=0.17345869976483153 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=778.0 MedAE_Forecast=778.0 MedAE_Test=778.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _QLD_State_ConstantTrend 0.4642168326702507 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _QLD_State_ConstantTrend_residue_Seasonal_MonthOfYear -0.007929039291138279 {1: 0.04936316118031814, 4: -0.2511390423658539, 7: 0.2938030504905569, 10: -0.0608141474186365} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='VIC_State' Length=44 Min=10190 Max=19131 Mean=13442.977272727272 StdDev=3041.391782844854 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_VIC_State' Min=0.0 Max=1.0 Mean=0.36382700735122186 StdDev=0.3401623736544966 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_VIC_State_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0409 MAPE_Forecast=0.0409 MAPE_Test=0.0409 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0404 SMAPE_Forecast=0.0404 SMAPE_Test=0.0404 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.1362 MASE_Forecast=0.1362 MASE_Test=0.1362 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=658.2827714285714 CRPS_Forecast=658.2827714285714 CRPS_Test=658.2827714285714 -INFO:pyaf.std:MODEL_L1 L1_Fit=511.6136363636364 L1_Forecast=511.6136363636364 L1_Test=511.6136363636364 -INFO:pyaf.std:MODEL_L2 L2_Fit=688.3676178269336 L2_Forecast=688.3676178269336 L2_Test=688.3676178269336 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.13749652910455054 LnQ_Forecast=0.13749652910455054 LnQ_Test=0.13749652910455054 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=431.5 MedAE_Forecast=431.5 MedAE_Test=431.5 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _VIC_State_ConstantTrend 0.36382700735122186 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _VIC_State_ConstantTrend_residue_Seasonal_MonthOfYear -0.14237526817215912 {1: 0.5730928002765603, 4: -0.15814531626521358, 7: -0.27848979674838104, 10: -0.0950651238929957} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.std:TIME_DETAIL TimeVariable='Date' TimeMin=1998-01-01T00:00:00.000000 TimeMax=2008-10-01T00:00:00.000000 TimeDelta= Horizon=12 -INFO:pyaf.std:SIGNAL_DETAIL_ORIG SignalVariable='Australia' Length=44 Min=59635 Max=87012 Mean=72548.47727272728 StdDev=7891.683869424701 -INFO:pyaf.std:SIGNAL_DETAIL_TRANSFORMED TransformedSignalVariable='_Australia' Min=0.0 Max=1.0 Mean=0.4716907357536353 StdDev=0.28825962922981696 -INFO:pyaf.std:DECOMPOSITION_TYPE 'T+S+R' -INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_' -INFO:pyaf.std:BEST_DECOMPOSITION '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [ConstantTrend + Seasonal_MonthOfYear + NoAR] -INFO:pyaf.std:TREND_DETAIL '_Australia_ConstantTrend' [ConstantTrend] -INFO:pyaf.std:CYCLE_DETAIL '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear' [Seasonal_MonthOfYear] -INFO:pyaf.std:AUTOREG_DETAIL '_Australia_ConstantTrend_residue_Seasonal_MonthOfYear_residue_NoAR' [NoAR] -INFO:pyaf.std:MODEL_MAPE MAPE_Fit=0.0314 MAPE_Forecast=0.0314 MAPE_Test=0.0314 -INFO:pyaf.std:MODEL_SMAPE SMAPE_Fit=0.0308 SMAPE_Forecast=0.0308 SMAPE_Test=0.0308 -INFO:pyaf.std:MODEL_MASE MASE_Fit=0.2095 MASE_Forecast=0.2095 MASE_Test=0.2095 -INFO:pyaf.std:MODEL_CRPS CRPS_Fit=1666.5089142857146 CRPS_Forecast=1666.5089142857146 CRPS_Test=1666.5089142857146 -INFO:pyaf.std:MODEL_L1 L1_Fit=2171.068181818182 L1_Forecast=2171.068181818182 L1_Test=2171.068181818182 -INFO:pyaf.std:MODEL_L2 L2_Fit=2988.2555377830236 L2_Forecast=2988.2555377830236 L2_Test=2988.2555377830236 -INFO:pyaf.std:MODEL_LnQ LnQ_Fit=0.08333920740925044 LnQ_Forecast=0.08333920740925044 LnQ_Test=0.08333920740925044 -INFO:pyaf.std:MODEL_MEDIAN_AE MedAE_Fit=1400.0 MedAE_Forecast=1400.0 MedAE_Test=1400.0 -INFO:pyaf.std:MODEL_COMPLEXITY 4.0 -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_START -INFO:pyaf.std:SIGNAL_TRANSFORMATION_MODEL_VALUES NoTransf None -INFO:pyaf.std:SIGNAL_TRANSFORMATION_DETAIL_END -INFO:pyaf.std:TREND_DETAIL_START -INFO:pyaf.std:CONSTANT_TREND _Australia_ConstantTrend 0.4716907357536353 -INFO:pyaf.std:TREND_DETAIL_END -INFO:pyaf.std:CYCLE_MODEL_DETAIL_START -INFO:pyaf.std:SEASONAL_MODEL_VALUES _Australia_ConstantTrend_residue_Seasonal_MonthOfYear -0.08154572351708636 {1: 0.4785594742766821, 4: -0.2073447518985745, 7: -0.07818523843837066, 10: -0.08490620859580206} -INFO:pyaf.std:CYCLE_MODEL_DETAIL_END -INFO:pyaf.std:AR_MODEL_DETAIL_START -INFO:pyaf.std:AR_MODEL_DETAIL_END -INFO:pyaf.timing:('OPERATION_START', ('PLOTTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia']})) -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 144.553, ('PLOTTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia']})) -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_PLOTTING') -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.432, 'HIERARCHICAL_PLOTTING') -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_FORECAST') -INFO:pyaf.timing:('OPERATION_START', ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -/usr/lib/python3/dist-packages/pandas/core/frame.py:9190: FutureWarning: Passing 'suffixes' which cause duplicate columns {'Date_Normalized_x', 'row_number_x'} in the result is deprecated and will raise a MergeError in a future version. - return merge( -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 4.103, ('FORECASTING', {'Signals': ['BrisbaneGC', 'Capitals', 'Melbourne', 'NSW', 'Other', 'QLD', 'Sydney', 'VIC', 'NSW_State', 'Other_State', 'QLD_State', 'VIC_State', 'Australia'], 'Horizon': 12})) -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_COMBINATION_METHODS ['BU'] -INFO:pyaf.hierarchical:FORECASTING_HIERARCHICAL_MODEL_BOTTOM_UP_METHOD BU -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 4.141, 'HIERARCHICAL_FORECAST') -INFO:pyaf.timing:('OPERATION_START', 'HIERARCHICAL_PLOTTING_AS_PNG') -INFO:pyaf.timing:('OPERATION_END_ELAPSED', 0.141, 'HIERARCHICAL_PLOTTING_AS_PNG') -PLOT_PNG_DICT ('BrisbaneGC', 'Trend', '1db63ab6f2e35607a38e6e0a5b72ea24', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Cycle', 'f803286c0f3669d0a2b7ca404229a60e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'AR', 'a6f6350b38e631468d1db742a5a80f41', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Forecast', 'db3506194c8bf4556635b084c3ba737d', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Prediction_Intervals', 'fc8f1191eac7e31463443d8de84ed563', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('BrisbaneGC', 'Forecast_Quantiles', '64f61af52b17e65cf47d958c3f331674', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Trend', '78a9fb3159d4c4ace642034b74ae63bf', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Cycle', 'e3ed8c63445963a341ed908c983b84a6', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'AR', '518b93317ac3feab7f32f8c1f62e6072', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Forecast', '3bae58a928e948d6a98f259de10be5c6', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Prediction_Intervals', 'fab7219db2efb0b3d37f961bcd5624f3', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Capitals', 'Forecast_Quantiles', '606187cac8d8704bdc98e9789cf2b156', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Trend', '3ad52abfa537168f68fe57b5dd97a45b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Cycle', 'f69b5d1c82f2a0280e41ef288e2ae13d', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'AR', '5c772be7703b88891f4b2b1a5fceee74', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Forecast', '54a5c38c56d66c7aee2517741f22427f', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Prediction_Intervals', '761256b57d835decb3c7f64855c5382b', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Melbourne', 'Forecast_Quantiles', 'ec2c9ef736b7cf8d38115275176c9686', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Trend', '0e42f5d23d33dcd1778993ade68bebb4', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Cycle', 'fa0f4c0c6440f17063f9be2907bb8841', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'AR', 'e4392bb1bcc0e3fc015410f47615e4aa', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Forecast', 'b34a4defb51f493d33c41abd7cfe2176', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Prediction_Intervals', '89d4b4de0768d23d1334df30157c1b78', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW', 'Forecast_Quantiles', '1fa4252e1595ae7f93276a11a9d9876d', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Trend', 'cfe579bed2e2337ffcbb6b85adf0cdce', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Cycle', '9574b1869370a1888bbac000ab368225', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'AR', '0637ba70efead7f42c591e990d2d1ccf', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Forecast', '99d4a06e220e33b1639b610a79bd3eee', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Prediction_Intervals', '0117558a4b8a1de04a888ba6c915187d', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other', 'Forecast_Quantiles', 'dccbf162573a8db8e93e85bfd85a22f0', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Trend', '5998b1f9dd3210c6ec4579ffdc031db3', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Cycle', '76158d6073448f4e551e9d3960c6a844', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'AR', '294cee0c8b29d0277ba1fb0bada253aa', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Forecast', 'bbf41df77adf1f8a81014050651a34bf', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Prediction_Intervals', 'df55dae023ddaf80cfcfc79403cb5e52', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD', 'Forecast_Quantiles', '860adeba4c311b823561a62f94e7302d', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Trend', '1c409f508aa350be756581c0bd8f5168', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Cycle', '0dc18e696cdbb1f66b438bbb0cb21939', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'AR', '945956d5a3ddc70eac1d3540042d0ab6', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Forecast', '4bfb21fd0d5096f4c3c86a1e3f6e7639', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Prediction_Intervals', '7bf476dcca65fb8e2150526adeef819b', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Sydney', 'Forecast_Quantiles', '481a10239b6db0f9d9d5bc46de2d8324', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Trend', '0b50c78c2c43c9b4662be299eb34af1b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Cycle', 'e6efbb65b7f5bc77948c5ecadd2b3512', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'AR', 'f8eb424d8bb6213b5d31ffab448f7d9b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Forecast', 'bf31a9e12f9485aace6b933b5cdb8cea', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Prediction_Intervals', 'f2cb041408421d8a67bbb74b40c31a52', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC', 'Forecast_Quantiles', '845365d5fe871f4fc080d590c9d737b3', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Trend', '0a90d092c48698f8767a370b2b72451e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Cycle', 'b0c64d65878ce4ffa4b0ceef6bb087aa', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'AR', '9b833a0343304f7e0378df0438b21d89', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Forecast', '7e96d1304306eecb1ba22d536985a5db', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Prediction_Intervals', 'bc5b7aa5c398fa890367b8c0f665ca64', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('NSW_State', 'Forecast_Quantiles', '9de5a0d82633ed89b2436aa56bb8f5da', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Trend', '79a804d3a125aa9698911f316ffa9a37', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Cycle', '219d32071b3ac55b18dc567a6e72bec5', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'AR', 'bdd44a3d53472baec69ede954e78f07e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Forecast', '8d36d7c7f9793e65f00e8535975d36ce', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Prediction_Intervals', '0646d7ca96a5e691094092df4677a0cf', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Other_State', 'Forecast_Quantiles', '5736983cb0ba25b423c9c5bbce95e63e', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Trend', 'ad67065fd7e5a84bb7eba7195d202191', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Cycle', 'a1bfe5387f1d4125ff8762e754434e94', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'AR', '6533335db3e2633e039cc0d33bd91721', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Forecast', '2df3c210871976ee14f370663d24a894', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Prediction_Intervals', 'b0705adbe7f64a6bb139985bbd1f6631', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('QLD_State', 'Forecast_Quantiles', '95a5fc7f79676a730466113dc3d5483d', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Trend', '7787c9c2400c42a3c2c3aa5aa8cc1929', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Cycle', 'ba9bc4c2c4bd44727e33c7d38e4cf782', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'AR', '192f660c140d6db9da20346edd99bceb', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Forecast', '3a4b30f541a6f968c4089a82b5b048eb', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Prediction_Intervals', 'c7f66841fd8eeeee09e25a729dd76236', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('VIC_State', 'Forecast_Quantiles', 'c6764811a32e292646f42ece6a9dc16e', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Trend', '2071152f3d5ce2433feee181d96e4b8e', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Cycle', '7e3ca5e46d17b91bec1b2fb286c20107', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'AR', '1a16adfc4fcfe987d85755f44f4cb591', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Forecast', '10423b6192de9151da9b40ef1fceef4b', 'iVBORw0KGgoAAAANSUhEUgAADIAAAAZACAYAAAC7HNiCAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Prediction_Intervals', '78fdf558df6ab04254b8cdfa851c5837', 'iVBORw0KGgoAAAANSUhEUgAABkAAAAMgCAYAAAB7wK5aAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Australia', 'Forecast_Quantiles', '8d50ba6d08d7fe8b7dbc1506b67fe27c', 'iVBORw0KGgoAAAANSUhEUgAABLAAAASwCAYAAADrIbPPAAAAOXRFWHRTb2Z0d2Fy') -PLOT_PNG_DICT ('Hierarchical_Structure', 'aa15a1cdcf778dd9ca9490fd44b70d70', 'iVBORw0KGgoAAAANSUhEUgAAAxUAAANdCAIAAABtdMZcAAAABmJLR0QA/wD/AP+g')