-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathextract.py
76 lines (72 loc) · 2.94 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch as th
import math
import numpy as np
from video_loader import VideoLoader
from torch.utils.data import DataLoader
import argparse
from model import get_model
from preprocessing import Preprocessing
from random_sequence_shuffler import RandomSequenceSampler
import torch.nn.functional as F
parser = argparse.ArgumentParser(description='Easy video feature extractor')
parser.add_argument(
'--csv',
type=str,
help='input csv with video input path')
parser.add_argument('--batch_size', type=int, default=64,
help='batch size')
parser.add_argument('--type', type=str, default='2d',
help='CNN type')
parser.add_argument('--half_precision', type=int, default=1,
help='output half precision float')
parser.add_argument('--num_decoding_thread', type=int, default=4,
help='Num parallel thread for video decoding')
parser.add_argument('--l2_normalize', type=int, default=1,
help='l2 normalize feature')
parser.add_argument('--resnext101_model_path', type=str, default='model/resnext101.pth',
help='Resnext model path')
args = parser.parse_args()
dataset = VideoLoader(
args.csv,
framerate=1 if args.type == '2d' else 24,
size=224 if args.type == '2d' else 112,
centercrop=(args.type == '3d'),
)
n_dataset = len(dataset)
sampler = RandomSequenceSampler(n_dataset, 10)
loader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=args.num_decoding_thread,
sampler=sampler if n_dataset > 10 else None,
)
preprocess = Preprocessing(args.type)
model = get_model(args)
with th.no_grad():
for k, data in enumerate(loader):
input_file = data['input'][0]
output_file = data['output'][0]
if len(data['video'].shape) > 3:
print('Computing features of video {}/{}: {}'.format(
k + 1, n_dataset, input_file))
video = data['video'].squeeze()
if len(video.shape) == 4:
video = preprocess(video)
n_chunk = len(video)
features = th.cuda.FloatTensor(n_chunk, 2048).fill_(0)
n_iter = int(math.ceil(n_chunk / float(args.batch_size)))
for i in range(n_iter):
min_ind = i * args.batch_size
max_ind = (i + 1) * args.batch_size
video_batch = video[min_ind:max_ind].cuda()
batch_features = model(video_batch)
if args.l2_normalize:
batch_features = F.normalize(batch_features, dim=1)
features[min_ind:max_ind] = batch_features
features = features.cpu().numpy()
if args.half_precision:
features = features.astype('float16')
np.save(output_file, features)
else:
print('Video {} already processed.'.format(input_file))