-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimp2.ml
142 lines (114 loc) · 2.81 KB
/
imp2.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
(** val negb : bool -> bool **)
let negb = function
| true -> false
| false -> true
type 'a option =
| Some of 'a
| None
(** val add : int -> int -> int **)
let rec add = ( + )
(** val mul : int -> int -> int **)
let rec mul = ( * )
(** val sub : int -> int -> int **)
let rec sub n m =
(fun zero succ n ->
if n=0 then zero () else succ (n-1))
(fun _ ->
n)
(fun k ->
(fun zero succ n ->
if n=0 then zero () else succ (n-1))
(fun _ ->
n)
(fun l ->
sub k l)
m)
n
module Nat =
struct
(** val eqb : int -> int -> bool **)
let rec eqb = ( = )
(** val leb : int -> int -> bool **)
let rec leb n m =
(fun zero succ n ->
if n=0 then zero () else succ (n-1))
(fun _ ->
true)
(fun n' ->
(fun zero succ n ->
if n=0 then zero () else succ (n-1))
(fun _ ->
false)
(fun m' ->
leb n' m')
m)
n
end
type id =
int
(* singleton inductive, whose constructor was Id *)
(** val beq_id : id -> id -> bool **)
let beq_id id1 id2 =
Nat.eqb id1 id2
type 'a total_map = id -> 'a
(** val t_update : 'a1 total_map -> id -> 'a1 -> id -> 'a1 **)
let t_update m x v x' =
if beq_id x x' then v else m x'
type state = int total_map
type aexp =
| ANum of int
| AId of id
| APlus of aexp * aexp
| AMinus of aexp * aexp
| AMult of aexp * aexp
type bexp =
| BTrue
| BFalse
| BEq of aexp * aexp
| BLe of aexp * aexp
| BNot of bexp
| BAnd of bexp * bexp
(** val aeval : state -> aexp -> int **)
let rec aeval st = function
| ANum n -> n
| AId x -> st x
| APlus (a1, a2) -> add (aeval st a1) (aeval st a2)
| AMinus (a1, a2) -> sub (aeval st a1) (aeval st a2)
| AMult (a1, a2) -> mul (aeval st a1) (aeval st a2)
(** val beval : state -> bexp -> bool **)
let rec beval st = function
| BTrue -> true
| BFalse -> false
| BEq (a1, a2) -> Nat.eqb (aeval st a1) (aeval st a2)
| BLe (a1, a2) -> Nat.leb (aeval st a1) (aeval st a2)
| BNot b1 -> negb (beval st b1)
| BAnd (b1, b2) -> if beval st b1 then beval st b2 else false
type com =
| CSkip
| CAss of id * aexp
| CSeq of com * com
| CIf of bexp * com * com
| CWhile of bexp * com
(** val ceval_step : state -> com -> int -> state option **)
let rec ceval_step st c i =
(fun zero succ n ->
if n=0 then zero () else succ (n-1))
(fun _ ->
None)
(fun i' ->
match c with
| CSkip -> Some st
| CAss (l, a1) -> Some (t_update st l (aeval st a1))
| CSeq (c1, c2) ->
(match ceval_step st c1 i' with
| Some st' -> ceval_step st' c2 i'
| None -> None)
| CIf (b, c1, c2) ->
if beval st b then ceval_step st c1 i' else ceval_step st c2 i'
| CWhile (b1, c1) ->
if beval st b1
then (match ceval_step st c1 i' with
| Some st' -> ceval_step st' c i'
| None -> None)
else Some st)
i