Shape: (1, 72, 72, 3) BGR channel order
Car pose should be front facing cars.
Estimating vehicle type and color
### Estimating vehicle type and color ###
- Type: car
- Color: black
COLOR_LIST = (
'white', 'gray', 'yellow', 'red', 'green', 'blue', 'black'
)
TYPE_LIST = (
'car', 'van', 'truck', 'bus'
)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 vehicle-attributes-recognition-barrier.py
If you want to specify the input image, put the image path after the --input
option.
$ python3 vehicle-attributes-recognition-barrier.py --input IMAGE_PATH
If you want to perform object detection in preprocessing, use the --detection
option.
$ python3 vehicle-attributes-recognition-barrier.py --input IMAGE_PATH --detection
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
You can use --savepath option to specify the output file to save.
$ python3 vehicle-attributes-recognition-barrier.py --video VIDEO_PATH --savepath SAVE_VIDEO_PATH
- OpenVINO - Open Model Zoo repository - vehicle-attributes-recognition-barrier-0042
- OpenVINO - vehicle-attributes-recognition-barrier-0042
OpenVINO
ONNX opset = 11