forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ndlocr_text_recognition.py
195 lines (145 loc) · 4.84 KB
/
ndlocr_text_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import sys
import time
import math
from logging import getLogger
import numpy as np
import cv2
from PIL import Image
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser
from model_utils import check_and_download_models
from image_utils import normalize_image
from detector_utils import load_image
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'ndlenfixed64-mj0-synth1.onnx'
MODEL_PATH = 'ndlenfixed64-mj0-synth1.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/ndlocr_text_recognition/'
IMAGE_PATH = 'demo.png'
CHAR_FILE_PATH = 'mojilist_NDL.txt'
IMAGE_HEIGHT = 32
IMAGE_WIDTH = 1200
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'NDL OCR', IMAGE_PATH, None
)
parser.add_argument(
'--vert',
action='store_true',
help='treated as vertical text.'
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version.'
)
args = update_parser(parser)
# ======================
# Secondaty Functions
# ======================
def get_char_list():
with open(CHAR_FILE_PATH, encoding='utf-8') as f:
char_list = f.read()
char_list = '〓' + char_list.replace("\n", "")
char_list = ['[CTCblank]'] + list(char_list)
return char_list
# ======================
# Main functions
# ======================
def preprocess(img):
im_h, im_w = img.shape
if args.vert:
vert = '縦'
elif im_w > im_h * 5:
vert = '横'
elif im_h > im_w * 5:
vert = '縦'
else:
vert = None
if vert == '縦':
img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
im_h, im_w = img.shape
# keep ratio with pad
ratio = im_w / im_h
if math.ceil(IMAGE_HEIGHT * ratio) > IMAGE_WIDTH:
resized_w = IMAGE_WIDTH
else:
resized_w = math.ceil(IMAGE_HEIGHT * ratio)
img = np.pad(img, ((0, 0), (10, 10)), constant_values=255)
img = np.array(Image.fromarray(img).resize((resized_w, IMAGE_HEIGHT), Image.Resampling.BICUBIC))
img = normalize_image(img, normalize_type='127.5')
pad_img = np.zeros((IMAGE_HEIGHT, IMAGE_WIDTH))
pad_img[:, :resized_w] = img # right pad
img = pad_img
img = np.expand_dims(img, axis=0) # CHW
img = np.expand_dims(img, axis=0) # NCWH
img = img.astype(np.float32)
return img
def decode(pred):
characters = get_char_list()
t = np.argmax(pred, axis=1)
char_list = []
for i in range(len(pred)):
if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank.
char_list.append(characters[t[i]])
text = ''.join(char_list)
return text
def predict(net, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = preprocess(img)
# feedforward
if not args.onnx:
output = net.predict([img])
else:
output = net.run(None, {'img': img})
preds = output[0]
text = decode(preds[0])
return text
def recognize_from_image(net):
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare input data
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time_estimation = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
text = predict(net, img)
end = int(round(time.time() * 1000))
estimation_time = (end - start)
# Logging
logger.info(f'\tailia processing estimation time {estimation_time} ms')
if i != 0:
total_time_estimation = total_time_estimation + estimation_time
logger.info(f'\taverage time estimation {total_time_estimation / (args.benchmark_count - 1)} ms')
else:
text = predict(net, img)
if text:
logger.info(" recognized: %s" % text)
else:
logger.info(" text not recognized")
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
env_id = args.env_id
# initialize
if not args.onnx:
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
else:
import onnxruntime
net = onnxruntime.InferenceSession(WEIGHT_PATH)
recognize_from_image(net)
if __name__ == '__main__':
main()