forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
executable file
·187 lines (154 loc) · 5.17 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import codecs
import sys
import time
import ailia
import cv2
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, update_parser # noqa: E402
logger = getLogger(__name__)
# ======================
# PARAMETERS
# ======================
MODEL_PATH = 'etl_BINARY_squeezenet128_20.prototxt'
WEIGHT_PATH = 'etl_BINARY_squeezenet128_20.caffemodel'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/etl/'
IMAGE_PATH = 'font.png'
IMAGE_HEIGHT = 28
IMAGE_WIDTH = 28
ETL_PATH = 'etl_BINARY_squeezenet128_20.txt'
MAX_CLASS_COUNT = 3
SLEEP_TIME = 0 # for webcam mode
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Japanese character classification model.', IMAGE_PATH, None
)
args = update_parser(parser)
# ======================
# Utils
# ======================
def preprocess_image(img):
if img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
elif img.shape[2] == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGRA)
img = cv2.bitwise_not(img)
return img
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
classifier = ailia.Classifier(
MODEL_PATH,
WEIGHT_PATH,
env_id=args.env_id,
format=ailia.NETWORK_IMAGE_FORMAT_GRAY,
range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
etl_word = codecs.open(ETL_PATH, 'r', 'utf-8').readlines()
img = imread(image_path, cv2.IMREAD_UNCHANGED)
if img is None:
logger.error("can not open "+image_path)
continue
img = preprocess_image(img)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
classifier.compute(img, MAX_CLASS_COUNT)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
classifier.compute(img, MAX_CLASS_COUNT)
# get result
count = classifier.get_class_count()
logger.info(f'class_count: {count}')
for idx in range(count):
logger.info(f"+ idx={idx}")
info = classifier.get_class(idx)
logger.info(
f" category={info.category} [ {etl_word[info.category].rstrip()} ]"
)
logger.info(f" prob={info.prob}")
def recognize_from_video():
etl_word = codecs.open(ETL_PATH, 'r', 'utf-8').readlines()
# net initialize
classifier = ailia.Classifier(
MODEL_PATH,
WEIGHT_PATH,
env_id=args.env_id,
format=ailia.NETWORK_IMAGE_FORMAT_GRAY,
range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath is not None:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = webcamera_utils.calc_adjust_fsize(
f_h, f_w, IMAGE_HEIGHT, IMAGE_WIDTH
)
writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
else:
writer = None
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
in_frame, frame = webcamera_utils.adjust_frame_size(
frame, IMAGE_HEIGHT, IMAGE_WIDTH
)
frame = preprocess_image(frame)
# inference
# compute execution time
classifier.compute(frame, MAX_CLASS_COUNT)
# get result
count = classifier.get_class_count()
logger.info('=' * 80)
logger.info(f'class_count: {count}')
for idx in range(count):
logger.info(f"+ idx={idx}")
info = classifier.get_class(idx)
logger.info(
f" category={info.category} [ {etl_word[info.category].rstrip()} ]"
)
logger.info(f" prob={info.prob}")
cv2.imshow('frame', in_frame)
frame_shown = True
# save results
if writer is not None:
writer.write(in_frame)
time.sleep(SLEEP_TIME)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()