forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
craft_pytorch.py
137 lines (109 loc) · 4.01 KB
/
craft_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import sys
import time
import cv2
import ailia
import craft_pytorch_utils
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
import webcamera_utils # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'craft.onnx'
MODEL_PATH = 'craft.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/craft-pytorch/'
IMAGE_PATH = 'imgs/00_00.jpg'
SAVE_IMAGE_PATH = 'imgs_results/res_00_00.jpg'
THRESHOLD = 0.2
IOU = 0.2
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'CRAFT: Character-Region Awareness For Text detection',
IMAGE_PATH,
SAVE_IMAGE_PATH,
)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
mem_mode = ailia.get_memory_mode(reduce_constant=True, reduce_interstage=True)
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id, memory_mode=mem_mode)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
image = craft_pytorch_utils.load_image(image_path)
logger.debug(f'input image shape: {image.shape}')
x, ratio_w, ratio_h = craft_pytorch_utils.pre_process(image)
net.set_input_shape((1, 3, x.shape[2], x.shape[3]))
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
y, _ = net.predict({'input.1': x})
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
y, _ = net.predict({'input.1': x})
img = craft_pytorch_utils.post_process(y, image, ratio_w, ratio_h)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, img)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
mem_mode = ailia.get_memory_mode(reduce_constant=True, reduce_interstage=True)
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id, memory_mode=mem_mode)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while(True):
ret, image = capture.read()
# press q to end video capture
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
x, ratio_w, ratio_h = craft_pytorch_utils.pre_process(image)
net.set_input_shape((1, 3, x.shape[2], x.shape[3]))
y, _ = net.predict({'input.1': x})
img = craft_pytorch_utils.post_process(y, image, ratio_w, ratio_h)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imshow('frame', img)
frame_shown = True
# save results
if writer is not None:
writer.write(img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()